
Chapter 3

Energetics and Dynamics of Biological Systems

While in the previous part of this book basic physical principles are explained

governing the formation of molecular and supramolecular biological structures, we

will come now to various functions of cells, tissues, organs, and organisms. For this,

of course, molecular considerations form an important fundament, but at the same

time, phenomenological parameters, like concentration, volume, viscosity, dielec-

tric constants, conductivity, etc., are used which in fact are defined for large and

homogeneous systems. In this way, we begin to enter the field of the so-called

continuum physics.

At the same time, the approaches of quantum mechanics and statistical thermo-

dynamics will now be replaced by those of phenomenological thermodynamics.

These approaches also are defined for sufficiently large homogeneous phases. We

should always be aware that in some cases, this in fact, does not meet the particular

conditions of the biological system. We mentioned this problem in the previous part

of this book, considering for example, mechanical or electrical properties of

biological membranes. The step from a molecular to a phenomenological approach,

nevertheless, is inevitable when considering larger systems like cells and

organisms.

We will come back to this point in general in context with the electrical structure

of organisms, discussing levels of biological organization in Sect. 3.5.1 (Fig. 3.33).

3.1 Some Fundamental Concepts of Thermodynamics

One of the first important treatise on the problems of thermodynamics was the

famous monograph by Sadi Carnot, entitled “Réflexions sur la puissance motrice du

feu et sur les machines propres a développer cette puissance” which was published

in 1824. In this book, thermodynamics was introduced as the theory of heat engines.

Julius Robert Mayer (1814–1878) was a physician and scientist to whom we owe
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the first numerically defined correlation between heat and work (1842). He there-

fore can be considered as the discoverer of the first law of thermodynamics. As a

result of physiological observations he had already discussed how the functioning

of the human body related to energy transformation in a heat engine. Meanwhile,

thermodynamics has become the theoretical fundament of all kinds of energy

transformation, and consequently, of all kinds of movement.

Applying thermodynamic considerations to open biological systems, however,

requires an extension towards explanations of irreversible processes, i.e., towards

nonequilibrium thermodynamics. This extension is made in two steps: Firstly, only

small deviations away from the equilibrium are considered. In this case, linear

relations between forces and rates can be assumed. In contrast to these linear
approaches, the thermodynamics of nonlinear processes is applied to systems far

from equilibrium. In this case, so-called dissipative structures appear, which are

stationary states with completely new qualities.

It seems important to emphasize here that although the far-from-equilibrium

condition of an organism represents an absolute precondition of life, nevertheless

there exist many subsystems, which can be properly calculated using equilibrium

thermodynamics, or thermodynamics of linear approaches. This means that bio-

physics must concern the whole scale of thermodynamic approaches.

3.1.1 Systems, Parameters, and State Functions

In Sect. 2.1.3, the term “system” was introduced in context with an explanation of

the term “structure.” We defined the system as an aggregate of elements with

certain interrelations. Furthermore, we explained that systems, the interrelations

of which are not simply relations, but interactions, are so-called dynamic systems.

These are the kinds of system to which thermodynamic approaches are to be

applied.

The question of what kind of model we should use, what we should consider as a

system, and what are its elements, depends exclusively on the particular problem,

and the corresponding point of view. An element of one kind of system can become

a system in itself when calculating another problem. An organism, for example, as

an element in an ecological system can become a system itself, if we ask a

physiological question, such as for example the interactions between its organs.

The organ can be considered as a system of cells, the cell as a system of organelles,

and so on.

A dynamic system can be analyzed in different ways. In contrast to system

theory, which calculates the kinetic interplay of individual elements (see the

Introduction to Sect. 5), thermodynamics considers a system simply as a continuum

which stands in a defined interrelation with its environment. The limit of this

continuum does not have to be a wall or a membrane. It can also be a process

that changes the quality of the subject of study. Chemical reactions as well as

processes of proliferation and evolution are examples of this.
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In thermodynamics systems are classified as follows according to the nature of

their boundary against their environment:

– The isolated system: this is an idealized system that does not exchange any kind

of energy or matter with its environment;

– The closed system: this system can exchange all kinds of energy with its

environment, but not matter;

– The open system: it can exchange both energy and matter with its environment.

The closed system can be influenced by its environment, and can cause changes

in its environment. However, it cannot be involved in an exchange of matter.

The state of a system can be described by a number of state variables. These are
either extensive or intensive parameters. Intensive parameters are nonadditive and

independent of the size of the system (e.g., temperature, concentration, pressure,

density). Conversely extensive parameters are additive when two systems are

combined (e.g., mass, volume).

Changes in a system are often characterized by differentials of its state variables.

A differential describes a very small change of a dependent variable (dy), if in a

function y ¼ f(x), a small change in the variable (dx) occurs. It can be calculated

from the product of the first derivative of the function f(x), multiplied by dx:

dy ¼ f 0ðdxÞ (3.1)

Most thermodynamic equations are functions with several variables. Hence, the

derivatives can be obtained with respect to one variable if the others are kept

constant.

This procedure is called partial differentiation. It has a special notation with the

parameters that are to be kept constant put as subscript to the symbols in

parentheses. The following example is quoted out of context, to demonstrate this.

@G

@ni

� �
p;T;nj

¼ mi for : j 6¼ i (3.2)

The partial derivative of the Gibbs free energy G with respect to the molar number

of substance i, when pressure (p), temperature (T), and the molar number of all the

other substances (nj) are kept constant, gives per definition, the chemical potential

(mi) of the substance i. In general, this is the same procedure as is used when a

function with several dependent variables is represented graphically in a two-

dimensional plot against one selected variable, keeping all other variables constant.

Small changes in a state function with several variables can be represented by a

so-called total differential. For this, all partial differentials of this function must be

summarized. These partial differentials are calculated as shown in Eq. 3.1, using,
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however, partial derivatives. The following equation for example, would apply to

the Gibbs free energy [G(p, T, ni)]:

dG ¼ @G

@p

� �
T;nj

dpþ @G

@T

� �
p;nj

dT þ
Xm
i¼1

@G

@ni

� �
p;T;nj

dni (3.3)

The mathematical definition of the total differential is of very great physical

importance to thermodynamics. This will be indicated by the following chain of

statements with reversible logical connections:

dG is a total

differential

$ G is a state

function

$ G depends only on the state of the system, and not on the

way in which that state was achieved

For this reason it is important that this property of a function is able to be

mathematically proven.

A differential equation is not always written in the easily followed way shown in

Eq. 3.3.

Often it is presented as a Pfaffian differential equation:

dn ¼ LdxþMdyþ Ndz (3.4)

The capital letters here represent any variable. There is a mathematical indicator

which allows one to determine whether dn is a total differential. This is the so-

called Cauchy condition, stressing that dn is a total differential if the following

conditions are fulfilled:

@L

dy
¼! @M

@x
;

@M

dz
¼! @N

@y
;

@L

dz
¼! @N

@x
(3.5)

If this is applied to Eq. 3.3, this means:

@ @G
@p

� �
@T

¼ @ @G
@T

� �
@p

¼ @2G

@T @p
(3.6)

From Eq. 3.6 it follows additionally that for such functions if they are

differentiated several times, the sequence of differentiations is unimportant. We

will use this property in a later derivation (Eq. 3.82).

Total differentials not only result from energetic parameters. This formalism of

course can be applied to any state function. Volume changes in mixed phases for

example, can be described by the following total differential equation:

dV ¼ �V1dn1 þ �V2dn2 þ �V3dn3 þ . . .þ �Vmdnm (3.7)
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where dV is the shift of the volume that occurs when the molar number of one or

more components of the system is changed. Furthermore, Eq. 3.7 allows one to

define the partial molar volume of a given substance i:

�Vi ¼ @V

@ni

� �
for : j 6¼ i (3.8)

The partial molar volume has the inverse unit as the concentration, namely:

m3 mol�1.

3.1.2 Gibbs Fundamental Equation

The scientific basis of thermodynamics is its three principles which are founded on

experimentally verifiable, empirical facts. Upon this solid foundation a framework

of definitions and relations has been built up which enables far-reaching

postulations on all kinds of energy transformations to be made.

The principle of conservation of energy, the so-called first law of thermodynam-
ics states that there must exist a physical parameter having the property of a state

function, which includes the consequences discussed in Sect. 3.1.1. Work (W), as a

physical parameter does not comply with this condition. General experience shows

that a change of a system from state A to state B can be achieved in many ways that

differ greatly from one another in the amount of work that is required. Therefore,

work cannot be a state function that could be used to characterize the energy state of

a system independently of the way in which it was achieved.

Let us introduce a parameter called internal energy (U). It shall be defined as a

state function which, as such, has a total differential dU. Let furthermore the

internal energy of a system be increased by dU if a certain amount of heat (dQ) is
introduced into the system, and/or if certain work (dW) is done in the system:

dU ¼ dQþ dW (3.9)

This equation contains the essence of the first principle of thermodynamics.

Usually, it is derived in detail with the help of the so-called Carnot cycle reflecting
processes in steam engines. For simplification, not losing any detail of biophysical

relevance, we choose here the simpler way of defining this.

Both, the differentials dQ, as well as dW, are reflections of a change of energy.

However, according to the second principle of thermodynamics, the heat (Q) differs
from all other forms of energy because it possesses a specific property: Any form of

energy can be completely transformed into heat but heat itself can only partly be

transformed into work.

Here again the entropy (S) has to be inserted. It is the same parameter as

introduced in Sect. 2.1.1 in its statistical character (Eq. 2.4). In phenomenological

3.1 Some Fundamental Concepts of Thermodynamics 99

http://dx.doi.org/2.1.1#10.1007/978-3-642-25212-9_2
http://dx.doi.org/2.4#10.1007/978-3-642-25212-9_2


thermodynamics entropy appears as a kind of measure of heat quality. For a quasi-

reversible process it is defined as follows:

dS ¼ dQrev

T
(3.10)

This equation offers an expression for dQ which can be introduced into Eq. 3.9.

Let us now consider in more detail the differential of work (dW) in Eq. 3.9. This

can be a sum of different kinds of work. Each being a product of a work coefficient

multiplied by a work coordinate. Work coefficients are intensive parameters

indicating a kind of measure of the performed work. In contrast, work coordinates
are extensive parameters, reflecting the effort of the performed work. For example,

the work (dWp) which is done when a gas is compressed by a pressure p resulting in
a volume alteration dV will be:

dWp ¼ �p dV (3.11)

where p represents the work coefficient and dV the work coordinate. The sign of this

equation depends on the definition of the work differential. A positive dW means

that there is an increase in the work done in favor of the system. In this case work is

achieved through the compression, i.e., a negative differential of the volume.

Work can be done in many different ways. An expansion of a material, for

example, means elongation (dl) in response to the application of a force (F):

dWl ¼ F dl (3.12)

A cell can do work by transporting a certain number of atoms or molecules (dn)
against a concentration gradient. At this point, the chemical potential (m) must be

introduced as the work coefficient. We will come back to this parameter in detail

later (Eq. 3.33). In this case the work differential can be written as follows.

dWn ¼ m dn (3.13)

Let us finally, from among the many other possible examples, consider charge

transport. If a particular amount of charge (dq) is transported against an electric

potential (c), then the electrical work done will be:

dWq ¼ c dq (3.14)

Equations 3.11, 3.12, 3.13, and 3.14 can be combined:

dW ¼ �p dV þ F dlþ m dnþ c dq (3.15)
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Considering that usually in the system a number of m substances are transported,

then this equation can be expanded as follows:

dW ¼ �p dV þ F dlþ
Xm
i¼1

mi dni þ c dq (3.16)

This is a more detailed form of the work differential which together with

Eq. 3.10, can be introduced into Eq. 3.9:

dU ¼ TdS� p dV þ Fdlþ
Xm
i¼1

mi dni þ c dq (3.17)

Equation 3.17 is a differential form of the so-calledGibbs fundamental equation.
Of course it can be expanded optionally by adding more kinds of work differentials,

for example for magnetic field influences (see: Eq. 4.19, Sect. 4.4). Alternatively,

this equation will be automatically reduced if certain changes become irrelevant.

For example, suppose a defined transformation within a system is not accompanied

by a mechanical strain. Then l remains constant, and consequently, dl ¼ 0. As a

consequence, the corresponding term disappears from the equation.

In Eq. 3.17 the Gibbs fundamental equation appears in the form of a Pfaffian
differential. Such expressions can be integrated under certain conditions, which

apply in this case. This gives:

U ¼ T S� p V þ Flþ
Xm
i¼1

mi ni þ c q (3.18)

It must be noted that the transition from Eq. 3.17 to 3.18 does not mean a simple

elimination of the differential operators; it is the result of a proper integration which

is not described here!

Using the rule given in Eq. 3.3, this process of integration can be reversed. It

gives:

dU ¼ T dSþ S dT � p dV � V dpþ F dlþ l dF

þ
Xm
i¼1

mi dni þ
Xm
i¼1

ni dmi þ c dqþ q dc (3.19)

A comparison of this result with the initial equation (3.17) shows that the

following condition must be satisfied:

S dT � V dpþ l dFþ
Xm
i¼1

ni dmi þ q dc ¼ 0 (3.20)
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This is the so-called Gibbs–Duham equation. It is useful for some calculations

because it allows one to reduce the degree of freedom of a system by one variable.

It has proved useful to define not only the internal energy (U), but also three

further energy functions. In some books the introduction of these parameters is

explained in a physical way, discussing processes of vapor compression, etc., but it

seems to be simpler just to accept the definitions of these parameters, and subse-

quently substantiate their usefulness.

The definitions are:

enthalpy: H ¼ U þ pV (3.21)

Helmholtz free energy F ¼ U � TS (3.22)

Gibbs free energy G ¼ H � TS (3.23)

The Gibbs fundamental equation (Eq. 3.17) can now easily be written down for

these new defined functions. Let us first transform Eq. 3.21 into a total differential,

according to Eq. 3.3. Using the definition (Eq. 3.21), the enthalpy (H) is a function
of: U, p, and V. This gives:

dH ¼ @H

@U

� �
p;V

dU þ @H

@p

� �
U;V

dpþ @H

@V

� �
U;p

dV (3.24)

From Eq. 3.21 follows directly:

@H

@U

� �
p;V

¼ 1;
@H

@p

� �
U;V

¼ V;
@H

@V

� �
U;p

¼ p (3.25)

which, when combined with Eq. 3.24, results in

dH ¼ dU þ Vdpþ pdV (3.26)

Combining this with Eq. 3.17 gives the Gibbs fundamental equation for dH:

dH ¼ TdSþ V dpþ F dlþ
Xm
i¼1

mi dni þ c dq (3.27)

In the same way it is possible to derive from Eq. 3.22 the relations:

dF ¼ S dT � p dV þ F dlþ
Xm
i¼1

mi dni þ c dq (3.28)

and:

dG ¼ S dT þ V dpþ F dlþ
Xm
i¼1

mi dni þ c dq (3.29)
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The choice whether Eq. 3.17, 3.27, 3.28, or 3.29 should be used to calculate a

particular system depends on the external conditions and the question which is

being asked.

Investigating a system under isobaric conditions (p ¼ const., i.e., dp ¼ 0), it is

useful to apply the equation for dH (Eq. 3.27), or for dG (Eq. 3.29), because in this

case the term of the volume expansion work (Vdp) vanishes. This corresponds to
the situation of most biological investigations. Therefore we will use mostly the

enthalpy (H) and the Gibbs free energy (G) in all further biophysical calculations

instead of the inner energy (U) and the Helmholtz free energy (F).
If the conditions are isothermal (dT ¼ 0), as well as isobaric (dp ¼ 0), then in

Eq. 3.29 the term, connected with heat, as well as that for volume work will vanish.

Hence, dG expresses directly the deviation of the energy content, as a result of work

which was done. The gradient of free Gibbs energy therefore indicates the direction

of a spontaneous process in the same way as a gradient of the potential energy

indicates the path of a rolling sphere on an inclined surface.

All these forms of the Gibbs fundamental function (Eqs. 3.27, 3.28, 3.29), as

well as Eq. 3.7 for partial volume, can be integrated according to Eq. 3.17 for dU.
In this way, a particular chemical reaction can be characterized by differences of

these parameters:

DRG ¼ Gproduct � Gsubstrat

DRH ¼ Hproduct � Hsubstrat

DRS ¼ Sproduct � Ssubstrat (3.30)

The parameter DGR indicates whether this reaction occurs spontaneously, i.e.,

whether Gproduct < Gsubstrate, i.e., DGR < 0. Conversely the reaction enthalpy DHR

is a measure of the thermal characteristics of isobaric processes. This means:

DRH > 0 – endothermic reaction

DRH < 0 – exothermic reaction

How does one obtain the parameters as used in Eq. 3.30? Only in the case of

entropy are absolute values available. This is a result of the third principle of
thermodynamics, based on the heat theorem of Walther Nernst, stating that at a

temperature of absolute zero the entropy becomes zero.

In contrast to entropy, no absolute values exist for the energetic parameters.

They always need a defined reference value. Therefore, standard energies of
formation (DFU, DFH, DFF, and DFG) are defined as energetic changes that occur

when a substance is formed from its elements under standard conditions (T ¼ 297

K), or better: would occur, because in most cases a direct synthesis of the substance

from its elements is impossible. In this case, they are estimated from particular sets

of chemical reactions starting from substances with known energy of formation.

This is possible using the definition of these parameters as state functions, their

amount being independent of the way the state was achieved (see definition in

Sect. 3.1.1).
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According to definition (2.23), for isothermal systems this is:

DRG ¼ DRH � T DRS (3.31)

A spontaneous reaction (DRG < 0) therefore requires an exothermic reaction

(DRH < 0) or the condition DRH < TDRS. In this case the direction of the reaction

is determined by the rise in entropy. This type of process is called an entropy-driven
reaction. The classical example of such a reaction is the melting of ice. In Sect.

2.2.2 we already discussed various biomolecular reactions of this type in context

with the structure of water.

Let us now consider the chemical potential which we need for numerous

considerations in the following sections. The chemical potential (mi) of the sub-

stance i is particularly important for the following calculations. It can be easily

defined using Eqs. 3.17, 3.27, 3.28, or 3.29:

mi ¼
@U

@ni

� �
S;V;l;nj;q

¼ @H

@ni

� �
S;p;l;nj;q

¼ @F

@ni

� �
T;V;l;nj;q

¼ @G

@ni

� �
T;p;l;nj;q

(3.32)

The chemical potential therefore, is a partial expression having the dimensions

J mol�1. The chemical potential of the substance i (mi) can be calculated from the

concentration (ci), resp. the chemical activity (ai) of this substance using:

mi ¼ m0i þ RT ln ai (3.33)

The chemical activity (ai) is a kind of effective concentration. Its relation to

concentration is given by:

ai ¼ fici (3.34)

In this equation, fi is the coefficient of activity. In ideal solutions, fi ¼ 1, that is,

the activity of the dissolved substance is equal to its concentration ci. Usually fi
decreases as the concentration in the solution increases (see Fig. 3.1). For

dissociating salts, f represents an average activity coefficient for the ions. For

example, the ions in a 100-mM solution of NaCl show an average activity coeffi-

cient of 0.8. The chemical activity of this solution therefore is equal to an ideal

solution with a concentration of only 80 mM. In contrast to the coefficient of

activity, which is a dimensionless number, the chemical activity has the same

units as the concentration.

In some cases it may be useful to employ the mole fraction as a measure of

concentration. The mole fraction of a substance i is defined as the number of moles

of that substance (ni), divided by the total number of moles of all substances

present:

xi ¼ niPm
i¼1

ni

(3.35)
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where:

Xm
i¼1

xi ¼ 1 (3.36)

According to Eq. 3.34, the mole fraction of a substance can also be expressed as

the mole fraction activity (axi).
The standard potential (m0i ) can be easily defined by means of Eq. 3.33. It follows

from this equation that when ai ¼ 1, mi ¼ m0i . The standard potential therefore is the
chemical potential of a substance i in a solution, with an activity of 1 M, if this

measure of concentration is applied. Using in Eq. 3.33 as concentration measure the

mol fraction (xi) of a substance, or its mol fraction activity (axi), then the chemical

standard potential (m0i ) is determined by the chemical potential of the pure sub-

stance (aix ¼ 1).

A further extension of the Gibbs fundamental equation concerns the term cdq.
The charge of a single charged ion is determined by the Faraday constant (F). The

charge on n moles of a z-fold charged ion is obtained as follows:

q ¼ znF (3.37)

This is a function with one independent variable (n). Therefore, it is easily

transformed into a differential according to Eq. 3.1:

dq ¼ dq

dn

� �
dn ¼ zF dn (3.38)

If more than one ion is in the solution, the charges can be summarized:

dq ¼
Xm
i¼1

ziF dni (3.39)

Fig. 3.1 Coefficients

of activity (fi) of various
substances as functions

of their concentrations (ci)
in aqueous solutions under

standard conditions

(T ¼ 297 K)
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Introducing this expression into the Gibbs fundamental equation, the equation

then gets two terms with the differential dni. It is obviously useful to combine these

terms. First, consider these two terms of the Gibbs equation in isolation from the

other terms of this equation:

c
Xm
i¼1

ziF dni þ
Xm
i¼1

mi dni ¼
Xm
i¼1

ðmi þ zi F cÞdni ¼
Xm
i¼1

~mi dni (3.40)

Here, the expression inside the brackets taken together is described as the

electrochemical potential (~mi) of the substance i.

~mi ¼ mi þ zi Fc (3.41)

The electrochemical potential is the basis for most electrochemical calculations,

and thus forms an important starting point for further considerations.

3.1.3 Force and Motion

After introduction of the generalized functions for the energetic state of a system in

the previous section we will now consider their application in determining forces

leading to any sort of motion.

A sphere is rolling downhill. It is moving spontaneously from a position with a

higher potential energy to one with a lower potential. The direction of this move-

ment follows a force vector (X) and is, consequently, determined by the negative

gradient of the energy U.

X ¼ �grad U (3.42)

If consideration of the energy gradient is confined to the direction of the

x-coordinate, this equation can be simplified to give:

Xx ¼ � dU

dx
i (3.43)

where i is simply a unit vector, i.e., a vector with the amount of 1, and an arrow,

directing toward the x-coordinate. For dU, any appropriate energy state function

should be substituted as shown in Sect. 3.1.2. Let us consider for example the force

acting on a charge (q) in an electric field in the x-direction (E ¼ �dc/dx·i).
Substituting for dU in Eq. 3.43, the expression, according to Eq. 3.17, gives:

Xq ¼ � dU

dx
i ¼ � dc

dx
i q ¼ E q (3.44)
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This assumes that there is no other gradient in the x-direction, i.e., that neither p,
nor T, nor m are functions of x. The introduction of the field strength (E) is in

accordance with the definition given in Eq. 2.45. Equation 3.44 is identical with

Eq. 2.46, which was derived by other approaches.

Equation 3.44 cannot be applied to practical calculations of ion transport

because only the transport of an electrical charge is considered. In contrast to the

movement of an electron, the transport of ions always means that there is an

additional change in concentration. For transport of a noncharged substance (i),
the negative gradient of its chemical potential (mi) is the driving force:

Xi ¼ �grad mi (3.45)

Ions, in contrast, are driven by the gradient of the electrochemical potential (~m),
which according to Eq. 3.41 includes the electric potential. Applying the differen-

tial operator, the electric potential (c) transforms into an electric field strength (E):

Xi ¼ �grad ~mi ¼ �ðgrad mi � zi FEÞ (3.46)

There are many kinds of movement in biological systems that are calculated by

biophysical approaches. Their range covers electron transfer, structural changes of

molecules, chemical reactions, fluxes of molecules and ions, streaming of liquids in

the body, and finally, mechanical movements of limbs and whole bodies. Fluxes

occupy a central position in the study of movements in biology, and therefore, these

will be considered here for the sake of simplicity, as a sort of generalized

movement.

The flux (Ji) is defined as the amount of a substance (i) that passes perpendicu-
larly through a unit of surface per unit of time. This definition shows that the flux in
general is a vector. Often the flux through a membrane is considered, the direction

of which is always predicted.

The relation between flux Ji of component i, and its velocity vi is:

Ji ¼ civi (3.47)

A system which is traversed by a flux, and where no substance is added or

removed to this flow, is called a conservative one. In this case the following

conditions apply:

div Ji ¼ 0 (3.48)

The differential operator div (“divergence”) can be replaced by the Nabla

operator (∇), as explained in Sect. 2.2.1. In contrast to the operator “grad,”

which, applied to a scalar results in a vector, the “div” operator is to be applied to

a vector, producing a scalar. The Nabla operator (∇) is applicable to differentiate

vectors as well as scalars.
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If divJi > 0 in such a system which is being traversed by a flux, it indicates that

there is a source that is adding substance to the flux. However, if divJi < 0, then

there will be a removal of some of the substance from the flux like a sink. Figure 3.2

illustrates this situation using an example where the flow is simply in the x-direction.
This formalism is applied, describing for example fluxes through biological

tissue. For the transport of ions, this system is conservative, because no accumula-

tion or depletion of ions occurs. In contrast, for the transport of oxygen the

condition divJo < 0 holds, because the tissue uses oxygen for its own respiration.

If a constant force acts on a body, then the latter accelerates. However, as

the velocity of this body increases, friction is likely to increase too. When both

the driving force and the frictional force become the same amount, then the body

will move with a constant velocity. This is a special case of a stationary state, the

so-called stationary motion.
It is a fundamental experience in physics that the particular relation between

force and movement characterizes regions with different qualities. If, for example,

a comparatively minor force acts on a body, then the body will attain a velocity that

is simply proportional to the force; this is a linear force-movement relationship and

therefore the linear approaches of irreversible thermodynamics are applicable. If

the same body is more forcibly moved, then the frictional force will increase in a

stronger way, the frictional coefficient is no longer constant, and a nonlinear force-

movement approach is necessary. Therefore, nonlinear thermodynamics, far from

equilibrium, must be applied including some new qualitative properties.

This concept, illustrated here by a mechanical example, has a more general

application. The linear approach can be formulated in a generalized form as an

equation of motion in the following way:

Ji ¼ Li Xi (3.49)

Fig. 3.2 (a) graphic

representation of a linear flow

with a source, and a sink;

(b) the flux (J) as a function

of x; (c) the change of the flow
(dJ/dx) as a function of x
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where the coefficient Li is a kind of generalized conductance. In the same way, the

following equation can be written:

Xi ¼ RiJi (3.50)

In this case a resistance factor is applied: Ri ¼ 1/Li. Ohm’s law is a special form

of this general expression:

U ¼ R I (3.51)

where U in this case is the electromotive force, depending on the potential gradient

(gradc), and I is the electric current.
In a similar way force and velocity can be related in a linear way. For this it is

necessary to introduce a mobility factor (o), and its corresponding coefficient of
friction (f):

v ¼ oX ¼ X

f
(3.52)

The flux equation (3.47) can now be written as follows:

Ji ¼ ci oiXi (3.53)

We introduced the Stoke’s equation (2.34) for the discussion of molecular

movement in Sect. 2.1.6. This is also a particular expression of this linear approach.

It indicates the frictional force (F) of a sphere with radius (r), moving in a liquid

with viscosity (�) at velocity (v). Under conditions of stationary motion, this

friction force is equal to the driving force:

F ¼ 6pr�v (3.54)

In view of Eq. 3.52, the following analogy is obvious:

f ¼ 1

o
¼ 6p r � (3.55)

The definitive mechanical behavior of bodies moving in water will be discussed

in detail in Sect. 3.7. Here it is only being used as an example for the consideration

of general principles.

Figure 3.3 shows the frictional coefficient (f) for a sphere with a diameter of 1 cm

in water as a function of its velocity (v). The frictional coefficient only remains

constant up to a velocity of about 1 mm s�1, corresponding to Eq. 3.55. As the

velocity increases above this, the frictional factor deviates, at first slightly, and then

greatly from the horizontal line. This illustrates the transition of the system from

linear to nonlinear behavior. This is the transition to far-equilibrium conditions,

where nonlinear thermodynamic approaches must be applied.
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Let us explain the genesis of such a nonlinear relation by a simple example. Let a

phenomenological coefficient be a sum of a constant term (Li), and a variable term

L0i , which is proportional to the flux (Ji). In this case, the linear approach of Eq. 3.49
transforms into:

Ji ¼ ðLi þ L0i JiÞXi (3.56)

Solving this equation for Ji, gives:

Ji ¼ LiXi

1� Li
0Xi

(3.57)

Hence we have a nonlinear function Ji(Xi).

The qualitative consequences of these nonlinear approaches will be considered

further in the next section. Let us at present remain in the field of linear

thermodynamics.

One of the fundamental statements of linear thermodynamics concerns the

coupling of forces and movements in a system. If different kinds of motions and

forces occur simultaneously in a system, they will influence each other.

Let us consider again the flux (Ji) as a generalized kind of motion. Nonequilib-

rium thermodynamics in its scope of linear approaches allows us to formulate a set

of phenomenological equations forming a flux matrix. This is the mathematical

expression of the general statement whereas all fluxes in a system in principle are

coupled with each other.

The simple Eq. 3.49, therefore, will be expanded to the following set of

equations:

J1 ¼ L11X1 þ L12X2 þ L13X3 þ . . .þ L1nXn

J2 ¼ L21X1 þ L22X2 þ L23X3 þ . . .þ L2nXn

J3 ¼ L31X1 þ L32X2 þ L33X3 þ . . .þ L3nXn

� � �
Jn ¼ Ln1X1 þ Ln2X2 þ Ln3X3 þ . . .þ LnnXn (3.58)

Fig. 3.3 The coefficient of

friction (f ¼ F/v) of a sphere

with a diameter of 0.01 m in

water as a function of its

velocity (v)
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In these equations the vector notation of fluxes and forces is still retained (bold

letters), regardless of whether they may in fact, in rare cases, be scalars, which we

will discuss in the following.

The parameters Lmn are phenomenological coefficients, also called coupling
coefficients, cross coefficients, or Onsager coefficients (this approach was

introduced first by Lars Onsager in 1931). In reality, this general set of equations

may be reduced, because a flux Jm is coupled with a force Xm only when Lmn 6¼ 0.

Equation 3.58 shows that n forces with their corresponding fluxes require a set of
equations with n2 coupling coefficients. Onsager, however, was able to show that

this matrix is symmetric. This means that near equilibrium the following relation

holds:

Lmn ¼ Lnm for : n 6¼ m (3.59)

This is Onsager’s law on the reciprocal relation. It leads to a significant

reduction of the coefficients in the matrix from n2, down to n(n + 1)/2.

Directly linked pairs of forces and fluxes, as for example J1 and X1, J2 and X2,

. . ., Jn and Xn, are called conjugated. The coefficients (Lnn), linking these pairs, are
always positive. If two fluxes really are coupled, the following condition must hold:

Lmm � Lnn � L2mn (3.60)

From this, a degree of coupling (qmn) can be defined:

qmn ¼ Lmnffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LmmLnn

p (3.61)

This degree of coupling can vary as follows: 1 � qmn � 0. When qmn ¼ 0, the

fluxes are completely independent of each other, when qmn ¼ 1, there is maximal

coupling.

As mentioned earlier in Eq. 3.58, all fluxes and forces are printed in bold letters

as vector parameters. At the same time we mentioned that we will consider here

fluxes in a very general sense, symbolizing all kinds of motion. This means that not

only true fluxes of matter which really are vectors going in a particular direction,

but for example, also chemical reactions will be considered. The flux, as mentioned

in this equation, therefore, can also mean a production of a substance, or the

removal of it, by a chemical reaction. In this case however the flux does not remain

a vector, but becomes a scalar. How can we include these scalar fluxes into a matrix

together with vectors and not violate mathematical rules?

Let us consider a simple set of flux equations, including a transport of a

substance (Ji) and a chemical reaction, the rate of which we will denote by the

scalar flux JR. Formal mathematics appears to allow only the following possibility:

JR ¼ LRRXR þ LRiXi

Ji ¼ LiRXR þ LiiXi (3.62)
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In the first equation, the product of two vectors (LRiXi) gives a scalar, as well as

the product of scalars (LRRXR), and so, this equation is a sum of scalars resulting in a

scalar flux (JR). In contrast, in the second equation all the terms of the sum are

vectors. In both equations therefore, the mathematical requirement for homogeneity

has been satisfied.

But: what is the meaning of a vectorial coupling coefficient? Introducing this

parameter, we declared it as a sort of conductivity. What does a conductivity vector

mean? In fact, in so-called anisotropic systems vectorial coefficients can appear. In

an isotropic system, for example, in an aqueous solution, the mobility of an ion in

all directions is equal. The parameter L, therefore is a scalar. Considering, however,
the same ion in a pore of a membrane, its movement is possible only in a

predetermined direction, and its conductivity consequently becomes a vector.

These circumstances are considered in the so-called Curie–Prigogine principle.
It states that the direct coupling of scalar and vectorial fluxes is possible only in

anisotropic systems. This principle, for example, is important in biophysical

considerations of active ion transport. In this case a hydrolysis of ATP is coupled

to the transport of an ion against an electrochemical gradient.

This example already indicates that the concept of coupled movements is not

limited to mechanical frictional interactions. This in fact is the case in some electro-

osmotic processes as described in Sect. 2.3.5 (Fig. 2.45). Furthermore, in Sect. 3.3.1

we will use this approach to introduce Staverman’s reflection coefficient, governing

the coupling of the osmotic fluxes of water and solute (Eq. 3.150). In general,

however, the concept of Onsager coefficients is applied in various networks of

biochemical processes.

Further Reading

Katchalsky and Curran 1965; Prigogine 1967; Schnakenberg 1981; Kjelstrup and

Bedeaux 2008.

3.1.4 Entropy, Stability, and Stationary States

The second principle of thermodynamics states that an isolated system moves

spontaneously towards a maximum in its entropy. When this state is achieved,

then the system is in thermodynamic equilibrium. In the same way, the decrease of

the free energy down to a minimum can be considered as the way towards the

equilibrium in the sense of the second principle.

Any movement as a result of energy transformation leads to an increase in the

entropy of the system or its environment. The term entropy production (s ¼ dS/dt)
has been introduced to characterize this process. The entropy production is always

positive, but can approach zero. The condition: s ¼ 0 would mean an idealized

reversible process. Thermodynamically, a process is defined as being reversible if it

can be repeated an arbitrary number of times without requiring the supply of

additional energy.
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To prevent misunderstanding, the different meanings of the term “reversible” in

physics, chemistry, and biology must be pointed out. In physics, the term “revers-

ible” is used according to the thermodynamic definition, i.e., connected with the

above-mentioned condition: s ¼ 0. When a chemist speaks about a “reversible

reaction,” or a “reversible electrode,” he only means processes that in principle

could run in both directions, independently of the required energy. Finally, the

biologist states that a change in a biological system is “reversible” when it is able to

reverse an induced change so that no irreparable damage is caused (for example:

reversible inhibition of metabolic processes).

Let us consider the total entropy balance of a system. In closed systems, as a

result of energy transformations, only an entropy increase is possible up to the point

where the thermodynamic equilibrium is established without any further entropy-

producing processes. In open systems, however, which are able to exchange not

only energy but additionally matter, the entropy may change in both directions. An

entropy decrease can occur if substances with low entropy content are incorporated,

in exchange for entropy-rich substances that are being extruded. To characterize

this process, an entropy flux (JS) is formulated which penetrates the whole system.

Hence, the total entropy balance of the system can be written as follows:

@S

@t
¼ �rJS þ s (3.63)

The overall change of the entropy of an open system (∂S/∂t), therefore, results as
the sum of the always positive entropy production (s), and the divergence of the

entropy flux (∇Js � div Js), penetrating the system. In reference to the definition in

Sect. 3.1.3 (see Fig. 3.2), the system in fact is not conservative in relation to this

entropy flux. Depending on the relation of the two terms in the sum (Eq. 3.63), the

total entropy change (∂S/∂t) can become positive as well as negative. The control

of the term∇JS can be considered as the work of a Maxwell demon, as described in

Sect. 2.1.2 (Fig. 2.2).

For further considerations it may be useful to introduce a thermodynamically

based classification of the various kinds of stationary states. We define a stationary
state as a state where the structure and parameters are time independent. The

reasons, leading to this quality can be quite different. The water level of a lake,

for example, can be time independent, i.e., constant, either because there is no

inflow into the lake, and no outflow, or because inflow and outflow are equal. These

two kinds of stationary states can be distinguished by their entropy production.

In the first case no energy is required to maintain this state, therefore there is

no entropy production, the system is in thermodynamic equilibrium (s¼! 0). In
contrast, the lake with exactly the same in- and outflow is in steady state. This is
a stationary state with entropy production (s>

!
0). The thermodynamic definition

of the steady state is the only possible one. It seems important to emphasize that

a steady state cannot be defined by its kinetic properties.

Let us illustrate this statement with an example: Using radionuclides it is

possible to demonstrate that human erythrocytes exchange chloride as well as
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potassium ions with their environment. With this method, it is possible to measure

directly the corresponding exchange rates. This kinetic method of analysis may give

the impression that both ions, �Cl, as well as +K, are in a steady state because in

both cases the unidirectional fluxes, outside ! in and inside ! out, are equal.

This, however, is an incorrect conclusion. The chloride ions in fact are distributed

passively between the external medium and the cytoplasm, according to their

thermodynamic equilibrium. The observed exchange of radioactive chloride results

from their self-diffusion by thermal motion. This process is not accomplished by

entropy production because no energy is converted. It is like a stochastic exchange

of water molecules between the two vessels in Fig. 3.4a. In contrast to this,

potassium is pumped actively into the cell by use of metabolic energy against its

electrochemical gradient, and diffuses passively back, driven by this gradient

(Fig. 3.4b). Both, the active transport as well as the passive diffusion, are true

fluxes in the thermodynamic sense, producing entropy. Potassium, therefore, in

contrast to chloride, really, is in a stationary state. This example indicates that the

above-described kinetic experiment of compartment analyses is unsuitable to

distinguish between an equilibrium state and a steady state. We will come back to

this problem later in detail (Sects. 3.4.1 and 5.1.1).

As we will see later (Sect. 3.3.3), the steady state of potassium can be

transformed into an equilibrium state if the pump is inhibited. In this case, a Donnan

equilibrium will be established which means an equilibration of all electrochemical

potentials. The steady state of sodium and potassium in the cell therefore resembles

case b in Fig. 3.4, passing into the equilibrium state (Fig. 3.4a), when the active

transport is inhibited. In contrast to this, various substances do not show the

possibility of an equilibrium distribution. If the influx is stopped they disappear

completely (Fig. 3.4c).

An important property of all stationary states is their kind of stability. Let us

illustrate this by a mechanical example of a sphere on a surface (Fig. 3.5). The

requirement for a stationary state, in this case this simply means an equilibrium, is

the sphere coming to rest on any small, but horizontal part of the surface. In the case

of an indifferent state, the surface is horizontal in general. In this case the energy of
the sphere will not be changed by alteration of its position. In the case of a stable

Fig. 3.4 Stationary states in

hydraulic models: (a)

thermodynamic equilibrium

(s ¼ 0); (b) a steady-state

system (s > 0), which

becomes an equilibrium (A),

if the pump (P) is stopped; (c)

a steady-state system (s > 0),

where stopping the pump (P)

would lead to a complete

outflow of the liquid from the

upper vessel
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state, every change of the position leads to an increase of the energy of the sphere,

and generates a force driving the sphere back to its original state. In contrast an

unstable state is characterized by a situation where even small changes of the

position release forces that cause the system to be deflected even more. Addition-

ally sometimes so-called metastable states are considered. As metastable, a stable
state can be considered which is delimitated from another one by a small barrier

which can easily be overcome.

In the mechanical examples of Fig. 3.5 the shape of the surface automatically

indicates the function of its potential energy. In general, however, these surfaces

have to be replaced by true functions of the free energy like those of Figs. 2.5 or

2.26.

Figure 3.6 indicates all possible kinds of stationary states. First of all the

presence, or the absence of entropy production indicates whether the given station-

ary state is a thermodynamic equilibrium (s ¼ 0), or whether it is a steady state
(s > 0). In the case of thermodynamic equilibrium one must distinguish between

global and local equilibria. In the case of a global equilibrium, the function of free

energy indicates only one minimum. This means that no alteration, however strong

it may be, can bring the system into another equilibrium state. An example is the

equilibrium distribution of an ion between the cell and its environment. In contrast,

in the case of the local equilibrium, the energetic function indicates two or more

minima which are separated by more or less high energy barriers. As an example,

isotherms of biochemical reactions can be considered, as illustrated in Fig. 2.5. The

stability of such local equilibria is determined by the energy barrier between them.

If this barrier is so low that thermal fluctuations can lead to quick transitions, the

state is called metastable. This for example is the typical situation for enzyme-

substrate complexes. For the schemes in Fig. 3.6 it must be considered that in reality

G is not simply a function of a single reaction coordinate (x), but rather a hyper-

plane in n-dimensional space.

In contrast to equilibrium states, the stability conditions of the steady states are

not simply dictated by their energy functions, but by their kind of entropy produc-

tion. For this we must learn something more about this parameter.

In concordance with its definition the entropy production has the measure:

J K�1 s�1. In some cases additionally this parameter is related to the mass in kg

or to the molar mass.

Fig. 3.5 Various kinds of

stability conditions
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Multiplying entropy production by temperature, one gets Rayleigh’s dissipation
function (F), which can be calculated from fluxes and forces as follows:

F ¼ sT ¼
Xm
i¼1

JiXi (3.64)

This equation holds for the region of linear, as well as of nonlinear flux-force

relations. Particularly for the linear region, Ilya Prigogine was able to show that

systems tend to develop towards a reduced entropy production. This is the

Prigogine principle of minimal entropy production. Systems, which are not far

from thermodynamic equilibrium, and which are kept in imbalance by continuously

acting forces consequently may move towards a steady state, the stability of which

is included in this criterion (see Fig. 3.6).

The dissipation function represents the specific heat generation of a system. In

living organisms it reflects the metabolic rate which in the case of aerobic

organisms is equivalent to the oxygen consumption. Therefore, it can be measured

directly by calorimetry or even calculated from parameters of respiration (see

Sect. 3.8).

Some authors discuss this metabolic rate in context with this Prigogine principle

of minimal entropy production. Figure 3.7 shows for example a mean scheme of the

characteristic situation in mice. While the total heat production ( _Q) increases in

accordance with their age and mass (m), the specific heat production, that is the heat
production relative to the body weight, i.e., the dissipation function (F), reaches a

maximum and then decreases. It seems therefore that an animal in the state of

Fig. 3.6 Possible types of stationary states and conditions of their stability
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development increases entropy production, whereas an adult organism tends to

arrive at a minimum. Disturbances in life lead to various deflections from this

curve. If an organism for example is injured, if it is stressed by some environmental

conditions, or in the case of tumor growth, the corresponding disturbances of the

metabolism lead to a temporary increase in the slope of the curve.

It is still controversial, however, as to whether the Prigogine principle can be

applied to large systems that include a great number of different subsystems,

particularly those which are far from equilibrium. If a system deviates from the

region of linear approaches, then the Prigogine principle is no longer valid. In

contrast to steady states in the scope of linear thermodynamic approaches which are

always stable and do not show any kind of metastability, systems in the region of

nonlinear approaches show more complicated behavior.

Considering nonlinear systems we must first generalize the term “stationary.”

We already mentioned in context with Stoke’s law (Eq. 3.54) that the so-called

stationary movement is a movement with constant velocity where the frictional

force is equal to the driving force. This sort of movement is also a kind of stationary,

i.e., time-independent state. The term “stationary state” can also be applied to states

that are not at rest, but show repetitive periodic movements in a stationary manner.

For example, cardiac function can be called “stationary,” if the frequency and

amplitude of the heart beat does not change during the period of observation.

In the case of a linear steady state, fluctuations of the system parameters produce

only positive deviations of entropy production, bringing the system back to the

stationary state, which is therefore stable in any case. In contrast to this, in the

region of nonlinear approaches, far from equilibrium, fluctuations of a stationary

state can lead also to negative deviations of entropy production, leading to a

destabilization of the system. The system may jump from one into another

Fig. 3.7 Dissipation function (F), heat production ( _Q), and mass (m) of mice as a function of their

life span from the time of birth, up to the 35th day of life (Data from Prat and Roberge 1960)
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stationary state. The steady states in the region of nonlinear approaches therefore

are mostly metastable (see Fig. 3.5). Their stability condition requires the occur-

rence of only positive deviation of entropy production. This is the so-called

Glansdorff–Prigogine principle.
The transition from linear, to nonlinear approaches of thermodynamics is not only

associated with an increase in the coefficient of friction, or with the occurrence of

several stationary states, but also with the spontaneous development of so-called

dissipative structures. The general concept of the diversity of structures has already

been discussed in Sect. 2.1.3. We postulated that there are basically, two different

types of structures: equilibrium structures (s ¼ 0), and dissipative structures

(s > 0). In contrast to equilibrium structures which are always structures in space,

dissipative structures can also be structures in time, or in a space–time continuum.

In order to illustrate this, Fig. 3.3 shows the function of the frictional coefficient

f(v) of a sphere, and the pattern of flow close to it. At a low velocity a laminar flow

around the sphere occurs, changing into a turbulent flow, when the nonlinear region

of this function is attained. When the flux-force relation changes from the laminar

to the nonlaminar region, then the unstructured laminar flow becomes unstable and

vortices appear which in the terminology of thermodynamics, are dissipative

structures (for details of streaming behavior, see Sect. 3.7.1).

There exists an extensive literature on the theory of dissipative structures and on

their occurrence in nature. Most of these dissipative structures are periodic

structures in space, such as cloud patterns, flow phenomena in liquids with an

applied temperature gradient, so-called Benard cells, plasma waves in electron

beam tubes, etc. In addition, there are many time structures, including for example

all kinds of sound production, from the electronic organ to vibrating strings, and to

wind instruments.

In biological systems, in spite of many speculations dissipative structures in

space have not been unequivocally demonstrated. Conversely, time patterns

showing this property have been found to occur quite often. Examples of this

include oscillations in metabolism, periodic changes in the membrane potential of

certain cells, for example in the cells of the cardiac pacemaker in the sino-auricular

node, and finally more complex, oscillatory movements in ecosystems. Sometimes,

such oscillations in local concentrations of certain substances become “frozen,” so

that structures arise which do not require entropy-producing processes to sustain

them, but which originally had been built as dissipative structures. One can

conceive, for example, the genesis of the first viable biomacromolecule occurring

in this way. Similar processes could form the basis of morphogenesis (for further

detail, see Sects. 5.2.3, 5.2.4, and 5.2.5).

Let us come now to a further aspect of stationary states. If a system is considered

as stationary, this is always in relation to a defined period of time. An organism

could be said to be in a stationary state for a number of hours, or for days. That is, its

volume, the content of certain substances, its shape, temperature, etc., are constant

within defined tolerance for this period of time. Nevertheless, the organism in fact is

ageing or growing. If a longer time period is considered, then the changes in these

parameters will exceed the defined tolerance limits.
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A biological system consists of subsystems, each of which is associated with a

different time constant. For example, the rate of aging in man is slow, in compari-

son with the rate of mitosis of a hemopoetic cell. Thus, the conditions in bone

marrow can be regarded as stationary during the course of several cycles of mitosis

in spite of the ageing processes affecting the organism as a whole. In vivo, the life

span of a human erythrocyte is about 100 days. The ionic composition of juvenile

erythrocytes differs somewhat from that of mature cells. If one is interested in the

ionic regulation of these cells, then, because of the temporal characteristics of such

processes, experiments lasting a few hours will be sufficient to provide the required

information. Within such short time periods. the ionic concentration can be

regarded as stationary. Figure 3.8 shows some characteristic times on a logarithmic

scale that will serve to extend this list of examples.

These considerations hint at the existence of a time hierarchy of stationary states,

related to their time constantswhich range over several orders ofmagnitude. The kinetic

consequences of this circumstance will be considered in Sect. 3.2.5. The following

concept, however, is important for our further thermodynamic considerations:

The living organism as a whole when considered within a limited period of time,

is in a stationary state with entropy production, i.e., in a steady state. It is made up of

a great number of subsystems which are ordered in a defined time hierarchy.

The steady state of the system as a whole does not imply that all of the subsystems

are also in a steady state. A large proportion of them, particularly those with a short

time constant, are in thermodynamic equilibrium. If the system as a whole changes

its parameters slowly, then these subsystems are capable of following such changes

quickly, so that they almost completely adapt within their characteristic time, and

thus are always in a stationary state. This is sometimes called a quasi-stationary, or
quasi-equilibrium state.

Fig. 3.8 Characteristic time constants (s – seconds, h – hours, a – years) of various processes on a
logarithmic scale, to illustrate the time hierarchy in biological systems
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The following example will illustrate this: The water content of a tissue depends

on the ionic composition of its cells. Sodium and potassium ions are being actively

transported against passive fluxes, giving rise to a steady state. In this way the active

transport and the corresponding passive fluxes regulate the osmotic properties of

the cells. The characteristic time of the water flux is much shorter than that of the

cations (see Fig. 3.8). As a result, the water in the interior of the cells is always in

osmotic equilibrium with the surrounding medium. In Sect. 3.2.3 we will discuss

this example in detail in context with the Donnan-osmotic quasi-equilibrium.

Further Reading

Feistel and Ebeling 2011; Glansdorff and Prigogine 1985; Haken 2010; Zotin 1990.

3.1.5 Stochastic Resonance and Noise-Enhanced Processes

Noise-enhanced processes have been widely observed throughout nature. It is now

broadly applied to describe any phenomenon where the presence of noise is better

for output signal quality than its absence. It spans the field from diverse climate

models, social and financial problems, via technical systems like electronic circuits,

SQUIDs and lasers, to various biological systems such as ecological and neural

models, ion channels, networks of biochemical reactions, etc.

Stochastic resonance (SR) as a particular property of dynamic systems is one of

the mechanisms that makes a nonlinearity less detrimental to the noise of a signal.

Quite unexpectedly, in this case noise can even lead to the formation of more

regular temporal and spatial structures, and cause recognition and amplification of

weak signals accompanied by growth of their signal-to-noise ratio (SNR). In fact,

noise in this case can play a constructive or beneficial role in nonlinear dynamics.

The term stochastic resonance was first used in the context of noise-enhanced

signal processing in 1980 to explain the almost periodic recurrence of the primary

cycle of ice ages every 1,00,000 years. The application of SR in biology started in

the early 1990s wherein SR was discovered in sensory neurons that had been

subjected to external noise.

SR can be considered as a phenomenon occurring in nonlinear systems far from

equilibrium, where the presence of a particular quantity of noise, superimposing a

signal input is better for its output quality than its absence. The word “resonance” in

this term on one hand was used because the plot of output performance, resp. the

signal-to-noise ratio – against the noise intensity resembles a bell-shaped function

with a single maximum; a similar appearance to frequency-dependent systems for

some resonant frequency. On the other hand a kind of periodic resonance between

properties of the system and some noise inherent frequencies occurs.

The basic mechanism of SR is schematically illustrated in Fig. 3.9. This example

stands for a kind of excitation model of a sensory system. An external signal (red

line) does not attain the threshold value (green line), therefore has no influence on

the system. If however, the superimposed noise (blue) becomes large enough to

arrive at the threshold value in cases of the maxima of the signal intensity, the
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periodicity of the signal will be reflected in the system (black bars). In this case the

noise becomes helpful for recognition of the signal by the system. If, however, the

noise intensity increases further, the character of the signal will be fully masked and

the SNR again tends to zero. This bell-shaped function of SNR in dependence of the

noise intensity is depicted in the curve below.

This particular system of SR in the mechanism of nerve excitation is investigated

quantitatively using the basic equations of the Hodgkin–Huxley model

(Eqs. 3.195–3.200 in Sect. 3.4.4). It helps to understand the role of SR in many

animal sensory systems.

To explain mechanisms of stochastic resonance in chemical reactions and

various transport processes, the double-well potential profile of potential energy

as a function of the reaction coordinate must be mentioned (cf. Fig. 2.5). In Sect.

2.1.5 we considered this system to deviate the Arrhenius equation. We mentioned

there that even processes of diffusion and membrane transport in principle are based

on the same kind of multiwell potential profiles.

In contrast to the equilibrium considerations of Sect. 2.1.5, let us now focus on

the transition process between the minima of this function, including fluctuations

induced by internal and external noise. For illustration one can apply a more

mechanistic view, considering the state of a system like a position of a particle in

a mechanical well (Fig. 3.10). The motion of such a particle qualitatively can be

characterized by two time scales: The first defines relaxations of fluctuations in the

linear regime around the stable fixed points (intrawell dynamics), the second

concerns the mean time of barrier crossings (global dynamics), as a result of a

nonlinear process.

The transformation of an external signal into an equivalent system behavior can

be considered as a periodic transition from one state to another, or in a mechanistic

view, as the movement of the particle from one well into the neighboring well. This

is only possible in a reasonable time if the external signal transforms the energy

function in such a way that the barrier between the two wells becomes small

enough. Otherwise (Fig. 3.10a), this transition does not occur, in other words, the

external signal will not be reflected by system behavior. In the case of an additional

noise (Fig. 3.10b), however, this becomes possible. In the same way as depicted in

Fig. 3.9, the external signal at optimal noise intensity can be received by the system.

In this context an interesting case of biological optimization should be noted. If a

particular noise intensity in some sensory systems is necessary to achieve optimal

SR, and if this noise has its origin in the stochastic properties of ion channels,

optimization can occur as a cooperation of several channels. The noise of a single

channel can be reduced by averaging the effect of an assembly of other channels.

Conversely, the SR effect vanishes if the assembly becomes too large. Apparently,

an optimal size of cooperating channel assemblies exists in such systems.

Thus, stochastic resonance allows us to realize the input of a signal at an optimal

noise level by switching events in a bistable system. Similarly, noise can enhance

oscillations in a dynamic system even without external periodic signals. This

phenomenon is called coherence resonance.
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This situation is modeled for example in nerve cells using a simplified version of

the Hodgkin–Huxley equations, which accounts for the essentials of regenerative

firing mechanisms. In fact, neurons are permanently affected by various kinds of

noise, such as for example the fluctuating opening and closing of ion channels, the

noise of presynaptic currents, fluctuations of conductivities, etc. As the neuron is

unable to fire during the recovery state, it becomes excited at a particular time scale

by sufficient intense noise. In this way an oscillatory behavior occurs. Since the

excitation time depends strongly on the noise, an optimal noise level exists like in

SR systems. However, unlike stochastic resonance, in the case of coherence

resonance no particular input signal exists.

There are also several other mechanisms, distinct from SR, where noise has a

constructive role. An example is the so-called Brownian ratchet, a mechanism,

which is used in technics, for example in some battery-less wristwatches that are

wound up by random movement. In this case a stochastically oriented force

Fig. 3.9 A scheme explaining the mechanism of stochastic resonance in a system with a definite

threshold like a neuron. Above – A, B, C: a subliminal sinusoidal signal (red line), superimposed

by noise (blue) with increasing intensity. A – weak noise, not attaining the threshold intensity

(green line). B – optimal noise intensity, leading to excitations (black bars), the time course of

which reflect the periodic character of the signal. C – extensive noise intensity, smearing the

character of the signal. Below: The output performance as a bell-shaped function of the noise

intensity
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generates a directed movement. The physical basis of this phenomenon is an

oscillating force, affecting an anisotropic system, where friction in one direction

differs from that in the opposite.

This mechanism led to speculations that such a Brownian ratchet, like a Maxwell

demon could be driven by thermal fluctuations, and in this way would form a

perpetuum mobile of the second order (see Sect. 2.1.2). A Brownian particle was

considered to interact with a ratchet exhibiting a sawtooth profile. In this case it

could move forward, driven simply by thermal noise. This would represent a

microscopic version of the winding mechanisms that are realized in wristwatches.

In accordance with the second law of thermodynamics, however, it is impossible to

produce oriented movement driven by thermal oscillations. Thus, as long as the

pawl has the same temperature as the ratchet it is subjected to the thermal noise

itself, i.e., its particular structure will be disturbed in molecular dimensions. In fact

the self-winding mechanism of the wristwatch is driven not by thermal noise but by

stochastically oriented acceleration, the energy consuming movement of the arm.

Its mechanism is based not on a rectifying of thermal noise, but on an input of

energy consuming stochastic force.

In biological systems various types of Brownian ratchets, as mechanisms

rectifying stochastically oriented forces, are identified, on the molecular level as

well as on the level of movement of cells and organisms. So for example, there exist

complex patterns of directed molecular movement that are based on filaments and

motor molecules, performing mechanical work on the nanometer scale driven by

ATP hydrolysis. These molecular motors and motor particles bind to cytoskeletal

Fig. 3.10 Stochastic resonance in terms of the reaction coordinate. (a) A periodic signal (red line)
modifies periodically one part (the backmost) of the double well potential of a reaction, but not

sufficiently to lead the system (illustrated as the position of the red particle) in a reasonable time to

transit into the neighboring (in front) well (A). (b) This however occurs under the influence of a

sufficiently intense noise. The effective transition of the particle between these two states in this

case may reflect the time scale of the periodic signal (red line) in the same way as in the example of

Fig. 3.9
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filaments and walk along these filaments in a directed fashion. This can be under-

stood in terms of Brownian ratchets driven by nonequilibrium processes. The motor

molecules can be considered as Brownian particles which can attain several internal

states, and experiences a certain molecular force potential in relation to the cyto-

skeletal filament.

Further Reading

Anishchenko et al. 2006; H€anggi 2000; Lipowsky and Klumpp 2005; Mahmud

et al. 2009; McDonnell and Abbott 2009.

3.1.6 Thermodynamic Basis of Biochemical Reactions

Chemical processes in biological systems are very complex and specific. In Sect.

2.1.5, we already mentioned the ability of enzymes to overcome energy maxima

of activation energy. Some aspects of chemical thermodynamics are explained in

Sect. 3.2.1. In Sect. 5.2.1, we will discuss the particularities of the kinetics of

biochemical reactions. Now, some general thermodynamic aspects of chemical and

biochemical reactions will be introduced to complete the approaches of equilibrium

as well as nonequilibrium thermodynamics.

In the previous formulation of the Gibbs equation (Eqs. 3.17, 3.27, 3.28, 3.29),

the chemical reaction was not explicitly enclosed. In fact, a chemical reaction can

be analyzed by referring to the chemical potential of its components. The reaction:

naAþ nbB ! ncCþ ndD (3.65)

can be considered as a replacement of the substances A and B by the substances C

and D.

Considering this process for isobaric (dp¼ 0) and isothermic (dT¼ 0) conditions,

where only concentration changes take place (dni 6¼ 0, dq ¼ 0, dl ¼ 0), the equation

for Gibbs free energy (Eq. 3.29) reduces to:

dG ¼
Xm
i¼1

mi dni (3.66)

The change in the Gibbs free energy (DRG) according to the definition (3.31) is

then given by:

DRG ¼ ncmc þ ndmd � nama � nbmb (3.67)
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Substituting in this equation the expression for the chemical potential (Eq. 3.33),

we obtain:

DRG
0 ¼ ncm0c þ ndm0d � nam0a � nbm0bþ

þ RTðnc ln ac þ nd ln ad � na ln aa � nb ln abÞ
(3.68)

Now, we can summarize these standard potential expressions and define a molar

free standard reaction energy:

DRG
0 ¼ ncm0c þ ndm0d � nam0a � nbm0b (3.69)

Substituting this in Eq. 3.68 and combining the logarithmic terms, we obtain the

van’t Hoff equation:

DRG ¼ DRG
0 þ RT ln

ancc a
nd
d

anaa a
nb
b

(3.70)

In the case of thermodynamic equilibrium, DRG ¼ 0. This allows to define the

equilibrium constant (Kp) for reactions under isobaric conditions, whereas the

symbols a0i stand for activities of the system in equilibrium:

Kp � a0ncc a0ndd

a0naa a0nbb

¼ e�
DRG

0

RT (3.71)

Substituting this expression into Eq. 3.70, we obtain for the case of equilibrium

(DRG ¼ 0):

DRG
0 ¼ �RT ln Kp (3.72)

The molar free standard Gibbs energy of a chemical reaction (DRG
0) can be

calculated using the standard energies of formation (DFG
0) obtained from tables

(see Eq. 3.31). In fact, we use here the property of Gibbs energy as being a state

function, that is, a parameter which is independent of the way in which it is obtained

(see Sect. 3.1.1).

If a reaction is not in equilibrium, then the direction which it will take can be

determined by calculating DRG (Eq. 3.70) from the given activities of the

components. Spontaneously the reaction can run in the direction indicated in

Eq. 3.65 only in the case where DRG < 0, resulting in a reduction of the free energy

during this process.

In this approach, we considered chemical reactions simply by changing the

concentrations of their compounds and not considering whether the alterations of

these concentrations were realized by transport processes or actually by a chemical

reaction. This is, in fact, more appropriate and useful in most cases. In some cases,
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however, chemical reactions take place combined with the processes of transport

of matter through biological membranes. In such cases, this approach can be

misleading. In this case it is useful to introduce a special term into the Gibbs

equation differentiating between transport processes and the chemical reaction.

In fact, it is possible to measure the progress of a chemical reaction using the

definition of the degree of advancement (dz):

dx ¼ 1

ni
dni (3.73)

A positive value of dz represents a particular step in the reaction from left to

right, whereas dni > 0 indicates an increase and dni < 0 a decrease of the molar

concentration of the substance. In order to maintain these sign conventions, the

stoichiometric coefficients (vi) of the initial substrates must become negative and

those of the end products, in contrast, positive.

Taking, for example, the reaction

2H2 þ O2 ) 2H2O

the following applies:

dx ¼ � 1

2
dnH2

¼ �dnO2
¼ 1

2
dnH2O (3.74)

Now, as the work coefficient according to our assumption in Sect. 3.1.2, the

chemical affinity (A) is defined as:

A ¼ �
Xm
i¼1

nimi (3.75)

where i ¼ 1 . . . m are the components of the given reaction. Using Eq. 3.73, the

following relation is obtained:

Xm
i¼1

mi dni ¼ �Adx (3.76)

To differentiate real chemical reactions (dz) and transport processes (dni), it is
useful to substitute both expressions into the Gibbs equation simultaneously. This

may be important when determining the processes of active ion transport through

membranes.

Affinity, from its definition, proves to be an energy difference and, as such, the

driving force of a chemical reaction. Consequently, it can be directly inserted into

the flux matrix (Eq. 3.58) instead of a generalized force (X).
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3.2 The Aqueous and Ionic Equilibrium of the Living Cell

From the point of view of thermodynamics, a living cell can be considered in

general as a system in nonequilibrium. This nonequilibrium state is maintained by

permanent processes of energy transformation. In spite of the state of the whole

system, however, some of these subsystems nevertheless may be in thermodynamic

equilibrium. The occurrence of such equilibria, or quasi-equilibria have already

been discussed in Sect. 3.1.4, in connection with the time hierarchy of biological

systems. In this section we will direct our attention to these equilibrium states,

especially equilibrium distributions of charged and uncharged components.

3.2.1 The Van’t Hoff Equation for Osmotic Pressure

It is very important to understand the concept of osmotic pressure for a number of

cell physiological processes. Unfortunately, osmotic pressure is often confused

with hydrostatic pressure, especially with the turgor pressure in plant cells. In this

section it will be shown that osmotic pressure is just a property of a solution or a

suspension and that although it can be the origin of the hydrostatic pressure in a cell,

it is not at all identical to it.

The effect of osmotic pressure can be demonstrated best by a Pfeffer cell (see
Fig. 3.22). This consists of a glass bell with a vertical tube or a manometer at the

top. The mouth of the bell is closed by a semipermeable membrane. The bell is

filled with a solution and submerged in a vessel with pure water. The membrane

allows the water, but not the molecules of the solute, to pass through. In his

experiments in 1877, the botanist Wilhelm Pfeffer used a sheet of porous pottery

to close the bell. The pores of this “membrane” were covered by a precipitated layer

of cupric(II)-hexacyanoferrate(II). In this experiment the water penetrates the

membrane, passes into the glass bell, and increases the internal hydrostatic pres-

sure. Eventually an equilibrium will be reached when the internal pressure balances

the osmotic force which drives the water into the Pfeffer cell. If the membrane is

truly semipermeable, if pure solvent is outside the glass bell, and if the system is

really in equilibrium, then, and only then, does the hydrostatic pressure difference

between the internal and the external phase in equilibrium state equal the osmotic

pressure of the solution inside the Pfeffer cell.

In order to analyze this situation let us assume two phases (I and II) separated

from each other by a membrane (see Fig. 3.11). Let the membrane be semiperme-

able thus allowing the solvent (w), but not the solute (s), to pass through. Because of
solvent flux through the membrane, the volumes of both phases and their

concentrations will change. This will also alter the chemical potentials (mi) of the
components (i).

The concentration dependence of the chemical potential, using the mole fraction

(xi) (see Eq. 3.33) as a measure of concentration is:
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mi ¼ m0ix þ RT ln xi (3.77)

To achieve thermodynamic equilibrium under isothermal conditions, the chemi-

cal potential of the exchangeable components of both phases I and II must be equal.

In the example considered here, this will only apply to the solvent (w). This requires

mIw ¼! mIIw (3.78)

which means that

m0Iwx þ RT ln xIw ¼ m0IIwx þ RT ln xIIw (3.79)

or

RT ln
xIw
xIIw

¼ m0IIwx � m0Iwx (3.80)

Now, let us first direct our attention to the difference in the standard chemical

potentials on the right-hand-side of Eq. 3.80. Because of the pressure difference

induced by the flow of the solvent, m0Iwx 6¼ m0IIwx . The pressure dependence of the

standard chemical potentials therefore must be studied in more detail.

The following definition of the standard chemical potential can be derived from

Eq. 3.32:

m0i ¼
@G0

@ni

� �
T;p;nj

(3.81)

The pressure dependence of m0i can therefore be expressed as

@m0i
@p

¼
@ @G0

@ni

� �
@p

¼
@ @G0

@p

� �
@ni

(3.82)

Fig. 3.11 Derivation of osmotic pressure: Phases I and II are separated from each other by a

semipermeable membrane. Only the solvent (w), but not the solute (s), can penetrate this mem-

brane. The hydrostatic pressure of both sides of the membrane is different
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The way in which the sequence of the derivation steps in a total differential can

be changed was discussed in Sect. 3.1.1 (see also Eq. 3.6).

From the equation of Gibb’s free energy (Eq. 3.29) we obtain:

dG0 ¼ V dp for : dT ¼ 0; dl ¼ 0; dq ¼ 0; dn ¼ 0 (3.83)

and

@G0
i

@p
¼ Vi (3.84)

If this is substituted into Eq. 3.82, then

@m0i
@p

¼ @Vi

@ni
¼ �Vi (3.85)

We are already acquainted with the variable �V which is the partial molar volume

of the substance i (Eq. 3.8). Now, the differential dm0i can be calculated. This is a

small change in m0i that occurs when there is a small change in the pressure dp.
Following the general rule (3.1), we obtain:

dm0i ¼
@m0i
@p

� �
dp ¼ �Vi dp (3.86)

To obtain an expression for the difference in the standard potentials due to

alterations in pressure, the equation must be integrated between the corresponding

limits:

ðm0IIi

m0Ii

dm0i ¼
ðpII
pI

�Vi dp (3.87)

This leads to:

m0IIi � m0Ii ¼ �ViðpII � pIÞ (3.88)

(This manner of integration only applies when �V ¼ const, that is, when the

partial molar volume is independent of the pressure. This is only the case for ideal

solutions.)

Now, it is possible to substitute Eq. 3.88, related to the solvent (w) into Eq. 3.80:

pII � pI ¼ RT
�Vw

ln
xIw
xIIw

(3.89)
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This equation indicates the hydrostatic pressure difference (pII � pI) induced in

our system at thermodynamic equilibrium for different values of the mole fractions

in the two phases xIw 6¼ xIIw. If phase I contains only pure solvent (xIw ¼ 1), this

pressure difference is called osmotic pressure (p), therefore

p ¼ RT
�Vw

ln
1

xIIw
¼ �RT

�Vw
ln xIIw (3.90)

This equation and its derivation allow us to describe osmotic pressure as a

parameter reflecting a property of a solution. Under isothermal conditions the

osmotic pressure of a solution is equal to the hydrostatic pressure, which is required

to alter the chemical potential of the pure solvent in such a way that it will be equal

to the chemical potential of the solvent in this solution.

Equation 3.90 is a precise expression to calculate the osmotic pressure of a

solution, provided the mole fraction activity of the solvent xIIw is used to express the

concentration of the solvent (w) in the solution. This is indeed a quite unusual and

rather cumbersome form for the equation. How can this equation be transformed

into a more simplified form?

Some simplifications can be made for dilute solutions. First, the activity, which
as a matter of fact is what xW in Eq. 2.14 means, can be replaced by mole fraction

concentration. Using Eq. 3.35, this means:

xw ¼ nw
ns þ nw

(3.91)

If the sum of the mole fractions of all components of a solution equals 1

(Eq. 3.36), then:

xw ¼ 1� xs (3.92)

The number of molecules of solvent in diluted solutions is much larger than the

number of molecules of the solute (nw � ns). A 0.1-molar solution of the substance

(s) in water (w), for example, contains ns ¼ 0.1 mol of solute, but nw ¼ 55.6 mol of

water (nw means moles of water per 1,000 g solution, therefore, 1,000/18 ¼ 55.6).

In this case, using the definition of xS (Eq. 3.35) it becomes:

xw ¼ 1� ns
ns þ nw

� 1� ns
nw

(3.93)

In addition, the following holds for dilute solutions:

�Vw ¼ @Vw

@nw
� Vw

nw
(3.94)
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Thus, nw ¼ Vw/ �V. One can also introduce the molar concentration of the solute

(s), using ns/V ¼ cs, and the total volume of the solution (V � Vw). Substituting this

in Eq. 3.93, we obtain:

xw ¼ 1� ns �Vw

V
¼ 1� cs �Vw (3.95)

Let us substitute this expression in Eq. 3.90:

p ¼ �RT
�Vw

lnð1� cIIs
�VwÞ (3.96)

Now, we use the following rule to expand logarithmic expressions in series. For

any number |q| < 1, it holds:

ln ð1� qÞ ¼ �q� q2

2
� q3

3
� q4

4
� . . . (3.97)

For q we use the expression cIIs
�Vw, which is much smaller than 1. In this case we

are justified in retaining only the first term of this series. This gives

p ¼ �RT
�Vw

ð�cIIs
�VwÞ (3.98)

and

p ¼ RTcIIs (3.99)

This is the Van’t Hoff equation for osmotic pressure.

It is interesting to note that, in 1877, Van’t Hoff derived this relation not in the

way shown here, but by considering the analogy with the state equation for an ideal

gas. He assumed that 1 mol of an ideal gas, when confined to a volume of 1 L,

would exert a pressure of 2.27 MPa on the walls of the vessel. He reasoned that the

molecules of a solute, when dissolved at a concentration of 1 mol/l should behave in

the same way as the particles of the gas. This pressure he called “osmotic.”

The equation of state for an ideal gas is:

p ¼ n

V
RT (3.100)

This can be transformed into:

p ¼ n

V
RT ¼ cRT (3.101)
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Both the thermodynamic derivation as well as the analogy used by Van’t Hoff

show that Eq. 3.99 is only applicable for ideal solutions, or with some approxima-

tion for solutions that are very diluted. This restriction can be overcome by using a

correction factor. This is the so-called osmotic coefficient (g):

p ¼ gcRT (3.102)

This factor must not be confused with the activity coefficient (f), which was

introduced in Sect. 3.1.2 (Eq. 3.34). This will be easily understood if f is directly
introduced into the thermodynamic derivation of the Van’t Hoff equation (e.g. in

Eq. 3.79). In this case, it would reflect the activity coefficient of water, not that of

the solute. The successive transformation of this equation up to Eq. 3.25,

introducing the concentration of the solute (cS) instead of the mole fraction activity

of water (xw) in fact used other assumptions. The relation between f and g is

somewhat complicated and will not be discussed here.

In addition to the nonideal behavior of a solution, it must be considered further-

more that the osmotic pressure exerted by dissociable substances in fact results

from the sum of the osmotic pressures of all the ions formed by dissociation. Thus,

if a mono-monovalent salt (such as NaCl) is assumed to be completely dissociated

into Na+ and Cl� then the osmotically active concentration is twice as great as the

salt concentration.

Therefore, one must distinguish between the osmolarity and the molarity of a

solution. The osmolarity of a 0.1-M solution of NaCl (at 25�C), is therefore:

2 	 0.1 	 g ¼ 2 	 0.1 	 0.932 ¼ 0.1864 osM. The osmolarity can be pH-

dependent for polyelectrolyte solutions because it will change according to the

degree of dissociation. In contrast to the osmolarity, expressed as osmol/l, some-

times the term osmolality is used as a measure expressed as osmol/kg. Considering

the temperature dependence of the volume, osmolality, i.e., relation to the mass in

osmometry is preferred in relation to osmolarity.

The osmolarity of a solution can be measured by various methods. The direct

method is the membrane osmometer where the hydrostatic pressure is indicated,

resulting in a solution separated from pure solvent by a semipermeable membrane,

like in a Pfeffer cell (schematically shown in Fig. 3.22). In this equipment, however,

sensitive pressure sensors are used instead of the vertical tube with a water column.

This method is applicable if membranes are available that are actually semiperme-

able to the particular solutes.

Mostly, the osmotic pressure of a solution is measured in an indirect way. In fact,

the reduction of the vapor pressure, or the freezing point of a solution are basically

determined in the same way as their osmolarity. Therefore, instruments are used to

measure these properties. In the case of clear solutions the most accurate and

comfortable technique is cryoscopy, i.e., the measurement of the freezing point.

For solutions of macromolecules, and for polydisperse suspensions, however, this

method cannot be used. In this case vapor pressure osmometers are preferred. They

indicate small stationary temperature differences between a drop of the fluid, and a
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drop of a control solution with known osmolality, caused by differences of evapo-

ration in a definite atmosphere.

Relating the osmolarity of solutions given theoretically by Eq. 3.25, with the

measured values, the osmotic coefficient (g) can be determined directly. Figure 3.12

indicates that for solutions of NaCl and KCl, starting from the value 1 in extremely

dilute, i.e., “ideal” solutions, it drops to values near to 0.9 with increasing

concentrations. The opposite behavior of sucrose is caused by its influence on the

water structure. We will come back to this point, as well as to the relation between

osmotic (g) and activity (f) coefficients in the next section.

3.2.2 Osmotic Pressure in Cells and Biologically Relevant Fluids

In the previous chapter basic equations were derived which help to understand

osmotic pressure as a property of a solution, and allow exact (Eq. 3.90) – or with

good approximation (van’t Hoff Eq. 3.102) – calculation of this quantity. In order to

apply the van’t Hoff equation to nonideal solutions, a correction term was included,

the osmotic coefficient (g). It usually becomes <1 if the concentration of the solute

increases (see Fig. 3.12), in a similar way to the coefficient of activity (f) as shown
in Fig. 3.1. The function g(c), however, does not decline as strongly as the activity

coefficient f(c). But in both figures it is exceptional that the values for sucrose are

rising. What could be the reason for this? What happens with other organic

molecules, especially with the highly concentrated macromolecules in biological

compartments? This question is important as the osmotic pressure is not only a

property of true solutions, but also of colloidal solutions and to some extent also of

suspensions. In this context it is referred to as colloid-osmotic pressure.
To solve this problem, the real properties of water in these solutions must be

considered in detail. We already discussed the interaction of water dipoles with

polar and apolar molecular compounds as well as with various kinds of surfaces

(see Sect. 2.2.3). We asserted that several kinds of fixed, or even encapsulated water

molecules in these kinds of solutions exist, which certainly contribute to the

osmotic property to different degrees.

Fig. 3.12 The osmotic

coefficient (g) as a function
of the concentration (c) in
aqueous solutions
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In fact, even in sucrose solutions, more so in suspensions, and in the cytoplasm

of living cells, water exists both in osmotically active and in osmotically inactive

phases, which may be even caused by these fixed, or “bound” kinds of water

molecules. This is obvious, when analyzing the real osmotic behavior of these

liquids.

To show this, let us introduce a molal concentration cs
0, representing the true

concentration of the solvent (s) in regard to the amount of osmotically active water.

Therefore it is defined as:

c0s ¼
ms

mfw
¼ ms

mtw � mbw
(3.103)

where m are mol masses of s ¼ solute, fw ¼ “free” water, tw ¼ “total water,”

bw ¼ “bound” water. Now, we can define W as a measure of “bound” water as:

W ¼ mbw

ms
(3.104)

Introducing mbw from Eq. 3.104 into Eq. 3.103, rearranging, and replacing ms/
mtw ¼ cs, results in:

c0s ¼
cs

1�Wcs
(3.105)

The van’t Hoff equation (Eq. 3.102) can now be used to introduce the “true”

osmotic active concentration cs
0, corrected with a “true” osmotic coefficient g0. For

simplification we are using the osmotic pressure in the unit “osmolal,” not in “Pa”

as in Eq. 3.102. Therefore, we do not need the RT-term. It becomes:

p ¼ g0c0s (3.106)

Introducing this into Eq. 3.105 and rearranging, results in:

1

cs
¼ W þ g0

p
(3.107)

If now the value 1/cs is plotted against 1/p, a linear function appears, indicating

W as the point at which the ordinate is crossed at 1/p ! 0, and g0 as the slope. This
is done in Fig. 3.13 for sucrose, polyethylene glycole (M ¼ 400), and bovine serum

albumin (BSA) (to fit in the same figure, the molal and osmolal values for BSA

were multiplied by 100!). The dotted line shows the slope for the case of g0 ¼ 1,

which corresponds to all of the three lines. The intercepts (W) are obtained at 0.0956

for sucrose, 0.4094 for PEG400, and 189.48 for BSA (considering the factor of

100!). Converting this in terms of mol H2O/mol solute, they are five for sucrose,

22.7 for PEG400, and 10,500 for BSA. Sucrose therefore is hydrated with one water
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per OH-group, whereas BSA is surrounded by multilayers of water that do not

participate in osmotic activity (according to Garlid 2000).

The osmotic pressure of the surrounding medium is an important parameter for

the survival of cells, especially for their volume regulation. In classical physiology

it is postulated that cells shrink in hypertonic solutions (psol > pcell), attain their

volume in isotonic solutions (psol ¼ pcell), and swell in hypotonic solutions (psol
< pcell). This is based on the assumption that cells behave like osmometers, the

membrane of which is freely permeable to water but impermeable for all solutes.

Furthermore, all the cellular water is considered as totally osmotically active.

There are two reasons why this assumption can be considered as strongly

simplified. First, cells even more so than macromolecules in solutions contain

water which is osmotically inactive. This can be demonstrated by considering the

simplest animal cell: the mammalian erythrocyte, which can be considered as just a

membrane-enclosed volume, packed with a large concentration of hemoglobin.

Usually, the volume of these erythrocytes is measured as centrifuged hematocrit

values, or by coulter counter measurements. Both methods may lead to artefacts,

especially if solutions of different compositions are used. Therefore in Fig. 3.14 the

relative volume is expressed as the inverse of protein concentration (mwater/mprotein

in g/g).
Similar to Fig. 3.13, the volume as an inverse of a concentration is plotted

against the reciprocal osmolarity of the external medium. The resulting curve in

the same way as in Fig. 3.13 does not attain the zero point of the ordinate, clearly

indicating that erythrocytes contain osmotically inactive water. Furthermore, the

measured points seem to show three different linear segments. In the region of

isotonic osmolality, this reflects in fact the behavior of native hemoglobin with a

Fig. 3.13 The plot of

measured osmotic activity of

bovine serum albumin (BSA),

polyethylene glycole

(PEG400), and sucrose

according to Eq. 3.107. Molal

and osmolal values for BSA

were multiplied by 100 to fit

in the same figure (After

Garlid 2000)
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content of fixed water of about 1.6 g per gram protein. Also shown are deviations

away from isotonicity. In the hypotonic region, obviously a number of osmotically

active small-sized molecules are released, and in the shrunken cells in hypotonic

media hemoglobin aggregates. Similar experiments with corresponding results

have been performed also in mitochondria.

The second, nonrealistic approach in the oversimplified consideration of the cell

as a simple osmometer, concerns the question of semipermeability. Investigating

for example erythrocytes in sucrose solutions, the permeability of water is in fact

much greater than that of the external solutes. Using, however, smaller molecules in

the external solution, like glucose, urea, etc., the cell membrane cannot be consid-

ered semipermeable and furthermore, the conditions used for the derivation of the

osmotic equations do not hold. The cell will not arrive at a thermodynamic

equilibrium as long as the solute is penetrating the membrane.

This question ultimately concerns the relation between the difference between

osmotic (Dp) and hydrostatic pressure (Dp). Only in the case of thermodynamic

equilibrium of water, and only if the membrane is actually semipermeable to all

components of the solution, does the difference in osmotic pressure equal the

difference in the generated hydrostatic pressure.

In the case of solutions with several components indicating various degrees of

permeability, the following relation between osmotic (Dp) and hydrostatic (Dp)
differences can be applied:

Fig. 3.14 Osmotic behavior of human erythrocytes in NaCl-solutions of various osmolarity. The

relative volume is measured in mean water content (mwater/mprotein) (After Fullerton et al. 2006,

redrawn)
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Dp ¼
Xn
i¼1

siDpi (3.108)

This equation takes into account that in the system n substances, each with an

osmotic difference Dpi ¼ pi(internal) � pi(external), determine the osmotic conditions.

Their effectiveness, with regard to the development of hydrostatic pressure,

depends on the value of a factor (si) which is known as Staverman’s reflection
coefficient. In contrast to the “classical” approach, this model takes into account

that the membrane is not semipermeable, but permselective. This means that all

components of the solution can more or less penetrate the membrane. We will

analyze this situation in detail later using the approaches of nonequilibrium ther-

modynamics (Sect. 3.3.1). Upon consideration of the corresponding flux matrix

(Eq. 3.147) the following relation is derived:

ss ¼ nw � ns
nw

(3.109)

Using the indices of the Van’t Hoff’s equation, vw and vs represent the rate of

movement of the solvent (water) and the solute in the membrane. In the case of

vs ! 0, the reflection coefficient becomes ss ! 1. This is the “classical” situation

of semipermeability, and therefore Dp ! Dp. However, when vs ! vw, then

si ! 0 and hence Dp ! 0. This occurs in the case of a membrane which allows

the osmotically active substance, as well as the solvent to pass through. In this case,

no hydrostatic pressure can develop even at initial differences in osmotic pressure.

In such a system a thermodynamic equilibrium would finally lead to a homoge-

neous distribution of substance i (see Fig. 3.22).
In general, the reflection coefficient for disaccharides, such as sucrose, and for

larger molecules equals nearly one. Smaller molecules, especially those which can

directly penetrate the lipid layer of a biological membrane, show lower values

(see Table 3.1).

Table 3.1 Typical values of

reflection coefficients of

nonelectrolytes for human

erythrocytes (Giebisch et al.

1979) and for Nitella flexilis
(Zimmermann and Steudle

1978). Values in parentheses:

Levitt and Mlekoday 1983

Erythrocytes Nitella

Urea 0.79 (0.95) 0.91

Thiourea 0.91

Ethylene glycol 0.86 (1.0) 0.94

Glycerol 0.88 0.80

Acetamide 0.80 0.91

Propionamide 0.84

Malonamide 1.00

Sucrose 0.97

Glucose 0.96

Methanol 0.31

Ethanol 0.34

Isopropanol 0.35

n-Propanol 0.17
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In plant cells, osmotic differences generate the so-called turgor pressure, which
can be as high as several hundred kPa. This intracellular pressure plays a large role

in the mechanical stabilization of plants. It forces the cell membrane of the plant

cell against the mechanically stabilizing cell wall, which itself is freely permeable

to ions and small nonelectrolytes. The turgor pressure can be directly measured by

means of special pressure probes that can be introduced into the cell (Zimmermann

and Neil 1989) or even noninvasively by a leaf patch-clamp pressure probe

(Zimmermann et al. 2010).

In contrast to plant cells, animal cells (and also plant protoplasts) do not have the

ability to resist an internal hydrostatic pressure. Within certain limits, osmotic

changes in the environment can be compensated by alterations in cellular volume,

thus maintaining a constant membrane area. Cell swelling, for example, can cause

the forming of a sphere or smoothing of the cell surface. As described in Sect. 2.3.4,

a mechanical expansion of the cell membrane, without introduction of additional

molecules, however, is nearly impossible. An osmotic difference of only 1 mosmol

can generate a maximum internal pressure of 2.27 kPa. Measurements made on

erythrocyte membranes have shown that their tension can, at the most, only

withstand an internal pressure of 0.1 kPa. For this reason, these cells have compli-

cated mechanisms for osmoregulation, including a number of coupled receptors and

transport systems.

Consequently, it is not possible to explain the volume regulation of a cell without

considering the complete ionic metabolism. We will come back to this problem in

connection with the Donnan equilibrium (Sect. 3.2.5).

Further Reading

Osmotically inactive water: Fullerton et al. 2006; Fullerton and Cameron 2007;

Garlid 2000; Osmoregulation of animal cells: Okada 2004; Osmotic pressure in

plants: Martin et al. 2001; Zimmermann et al. 2004.

3.2.3 Electrochemical Equilibrium: The Nernst Equation

We will now consider a system consisting of two phases, each of which contains

a solution with a salt AB, but with different concentrations in phases I and II

(Fig. 3.15). Let the salt be completely dissociated into its ions A and B. The

membrane is semipermeable in that it allows ion A, but not ion B, to pass through.

Fig. 3.15 Diagram illustrating the derivation of the Nernst equation. Phases I and II are separated

from each other by a membrane which is permeable only for the ion A, but not B, of the salt AB
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Before analyzing conditions of thermodynamic equilibrium of this system, we

will consider the situation qualitatively. Let us suppose that there is an osmotic

equilibration between both phases, compensated by electroneutral components.

Thus, alteration of concentrations, induced by volume changes, can be neglected.

In this system the electrostatic equilibrium will be disturbed because only ion A,

driven by its concentration gradient, but not its counterpart, ion B can penetrate the

membrane. This leads to an increase in the electrical potential difference across the

membrane. Eventually, a strong electric field hinders a further diffusion of ion A.

Ion A, consequently, will be subject to two opposing forces: on the one hand, the

driving force, induced by the concentration gradient, i.e., the gradient of its

chemical potential and, on the other hand, an opposing electrostatic force which

only arises as a result of its own diffusion. The following equilibrium will be

established: a few ions cross the membrane, inducing an electric field which stops

further diffusion.

The basic condition to calculate this equilibrium is the equality of the electro-

chemical potentials of ion A between phases I and II:

~mIA ¼! ~mIIA
Substituting the expressions for the electrochemical potentials according to

Eq. 3.41, one obtains

m0IA þ RT ln aIA þ zAFc
I ¼ m0IIA þ RT ln aIIA þ zAFc

II (3.110)

(We will assume isothermal conditions, i.e., TI ¼ TII ¼ T.)
In contrast to the derivation of the equation for osmotic pressure, in the present

case, the standard potentials of these components of phases I and II are equal,

because there is no pressure difference (m0IA ¼ m0IIA ).

Taking this into account, and re-arranging Eq. 3.110, gives

zAFðcI � cIIÞ ¼ RTðln aIIA � ln aIAÞ (3.111)

and therefore

Dc � ðcI � cIIÞ ¼ RT

zAF
ln
aIIA
aIA

(3.112)

This is the Nernst-Equation. It gives the electrical potential difference (Dc)
across the membrane as a function of the chemical activities of the permeating ion

in both phases at thermodynamic equilibrium.

Equation 3.112 can be re-arranged to show the difference of ion activities (aI and
aII) which builds up in two phases, with a given potential difference (Dc) in

between:
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aIA ¼ aIIAe
�
zAFDc
RT (3.113)

Such a relation has already been derived and employed using the Boltzmann

equation (Sect. 2.1.4), and applied to calculate local ion concentrations near

charged particles (Eq. 2.50), or in electric double layers (Eq. 2.77). In these

cases, however, the concentrations (ci) were used instead of the chemical activities

(ai). This is allowed only for ideal, i.e., diluted, solutions, or when the activity

coefficients (fi) are equal in both phases.

The Nernst equation, therefore, permits the calculation on the one hand, of the

distribution of ions as a function of the electrical potential (Eq. 3.113) and, on the

other hand, the electrical potential, which is induced by an unequal distribution of

ions (Eq. 3.112). For both cases, however, thermodynamic equilibrium is required!

The separation of the two phases of the system by a semipermeable membrane,

as discussed here, reflects just one special example. In the case of ion distribution in

electric double layers, or ionic clouds, as described in Sects. 2.3.5 and 2.3.6, the

electric potential gradient is predicted by the fixed charges, and the distributions of

the ions are not limited by a membrane. Here, both the anions and the cations in the

case of equilibrium are distributed according to this equation.

All equations, derived in the present section, are applicable only for thermody-

namic equilibria. This means that the Nernst equation cannot be used to calculate the

membrane potential of a living cell. Actually, the membrane potential of a living cell

is either a diffusion potential (liquid junction potential), or it is generated by electro-

genic ion pumps (see Sects. 3.4.2 and 3.4.3). Conversely, despite the nonequilibrium

distribution of the ions in the cell in general, it is quite possible that some types of ions

may be distributed passively and then they are actually in equilibrium.

An example of this is the chloride concentration of most animal cells. Because

its membrane permeability is rather fast, and because no chloride pumps in the

membrane exist, its distribution is mostly passive, and predicted by the existing

transmembrane potential. The Nernst equation, therefore, allows one to calculate

the internal chloride concentration, if the external chloride concentration

and the transmembrane potential are known. Conversely, knowing, for example,

the distribution of chloride inside and outside the cells, one can calculate the

transmembrane potential of the cell. In this context, however, it is important to

underline that in this case the chloride distribution is just an indicator for the

membrane potential, but not the reason for it!

This consideration allows the establishment of a method to measure the trans-

membrane potential of cells without microelectrodes. The chloride distribution can

be easily determined using the radioisotope 36Cl. Sometimes one can use other

small charged organic molecules, which penetrate the membrane quickly, and are

labeled by 3H or 14C. Knowing the distribution of these ions, the membrane

potential (Dc) can be calculated according to Eq. 3.112.

Furthermore, the Nernst equation allows the calculation of electrode potentials.

If a metal is dipped into an electrolyte solution, then cations are detached from the
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metal lattice and an electrochemical equilibrium is obtained. In general, this is the

same situation as discussed above. The resulting electrical potential difference

between the metal and the solution is called electrode potential. If the cation

from the metal of the electrode forms a poorly soluble salt with an anion of the

solution, and if the concentration of this anion is much greater than that of the

cation, then the electrode potential, linked through the soluble product of the salt, is

directly determined by the chemical activity of this anion. In this way, for example,

a silver electrode covered by AgCl can be used to measure the Cl� activity of a

solution (see Fig. 3.16). The voltage of this electrode with respect to a reference

electrode, according to the Nernst equation (Eq. 3.112), is proportional to the

logarithm of the Cl� activity in the solution. It is important to emphasize that

these kinds of electrochemical methods allow the measurement of ion activities (ai),
in contrast to most chemical methods, indicating its concentrations (ci).

The electrochemical measurement of ion activity and of many other chemical

substances has become an important and universal technique. Using special semi-

permeable membranes, or water impermeable layers containing special ionophores,

electrodes can be made which are highly selective to measure the activity of special

chemical components. In this case, these membranes or microphases separate a

reference solution of known composition from the test solution. The potential

difference between the reference solution and the test solution is measured as the

voltage between two reference electrodes dipped in both phases.

A typical example for this kind of measurement is the usual pH electrode

(see Fig. 3.16). In this case, a thin membrane of special glass or another material

allows the protons to equilibrate between both phases. If, as a reference phase, the

pH electrode is filled by a buffer holding the pH constant, then the voltage between

the pH electrode and the reference electrode indicates the pH of the test solution.

Usually, combinations between pH and reference electrodes are used, consisting of

one single glass body.

For electrochemical methods of analysis a pair of electrodes is always necessary.

The electromotive force will be measured between a selective measuring electrode

and a so-called reference electrode. A reference electrode is an electrode that

exhibits a constant electrode potential that is independent of the composition of

the solution into which it is immersed. If a pair of identical reference electrodes is

used, then the electrode potentials will mutually oppose each other and therefore the

direct potential difference, i.e., the actual electromotive force between the two

phases can be measured. If two different reference electrodes are used, a constant

Dc is superimposed, which can be subtracted from the measured value.

To make a reference electrode, a metal electrode is covered with a slightly

soluble salt of this metal. This is immersed into a reference solution of constant

composition, which is connected to the test solution by means of a pathway, where

little, if any, convection can take place (liquid junction). This liquid junction is

formed in different ways. It can be a tube, filled by an agar gel. However, in

industrially produced electrodes, it is mostly just an opening in the glass wall,

covered by a small filter made from sintered glass. Sometimes a ground glass

stopper is used with a liquid film in between.
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The most common types of reference electrodes are Ag/AgCl/KCl electrodes

(see Fig. 3.16). In this case, a saturated solution containing 4.6 MKCl as a reference

solution is used. The reason for choosing KCl is that in any case, a concentration

gradient exists through the connection between the reference solution and the test

solution. This could become a source of an electrical potential difference (diffusion

Fig. 3.16 The construction of an Ag/AgCl/KCl-reference electrode, as well as its application for

electrochemical measurements of Cl� activity and pH, and as a reference electrode in

electrophysiology
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potential, see Sect. 3.3.3). This would contradict the conditions for reference

electrodes, i.e., the constant potential, independent of the test solution. This diffu-

sion potential, however, depends not only on the concentration gradient, but also on

the mobility of both ions (see Eq. 3.190). The mobility of the K+ and Cl� ions in

aqueous solutions, however, is almost equal. This means that even for strong

concentration gradients between reference solution and test solution, no diffusion

potential can occur. This would not be the case, if for example NaCl was used as the

reference solution.

Unfortunately, this useful property of K+ and Cl� ions is valid only in pure

solutions. If a reference electrode is immersed for example in suspensions of

charged particles, a so-called suspension effect occurs. Under the influence of the

electric double layers of these particles, the mobility of the ions may change.

Therefore, small diffusion potentials can occur. This effect, for example is impor-

tant in the case of pH measurement in blood. Moreover, it can be the source of

errors in measurements with microelectrodes in cells.

Microelectrodes, as applied in electrophysiology, are usually Ag/AgCl/KCl

electrodes. They are constructed from glass tubes that are drawn out at one end to

a very fine capillary (diameter <1 mm). In this case, no further diffusion limitation

in the tip is necessary. Because of the electric charge of the glass and the extremely

thin glass wall at the tip, so-called tip potentials of microelectrodes occur which in

worst cases can be as large as several millivolts. Microelectrodes can also be sealed

with ion-selective materials so that intracellular ionic activity can be measured

directly.

Further Reading

Electrodes in general: Fry and Langley 2005; Varma and Selman 1991;

microelectrodes: Amman 1986.

3.2.4 The Donnan Equilibrium: Basic Properties

The Donnan state represents an equilibrium between two phases, containing not

only small anions (A) and cations (C), both of which are freely exchangeable

between the phases (i.e., can penetrate the membrane), but also charged molecules

or particles (M) that are fixed in one phase (i.e., cannot penetrate the membrane; see

Fig. 3.17). This type of equilibrium was investigated by F. G. Donnan in 1911.

Fig. 3.17 The derivation of the Donnan equilibrium. Phases I and II are separated from each other

by a membrane, that is permeable for the anions (A) and cations (C), but not for the charged

molecules M
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These considerations are of particular importance to understand the properties of

various colloidal as well as biological systems where the phases are separated by

membranes with particular conditions or permeability.

To analyze this situation, let us denote the exchangeable ions by the index i, and
the fixed charge components by m; the concentration, or the activity of the

components of one phase, resp. inside the cell with cI or aI, and in the second

phase, or external solution with cII or aII, respectively. The parameter zm denotes the

number and the sign of charges of the nonexchangeable molecules.

The Donnan equilibrium is defined by the following three conditions:

– All permeable ions (i), being in equilibrium, are distributed according to the

Nernst equation (Eq. 3.113):

aIi ¼ aIIi e
�
ziFDc
RT (3.114)

– In both phases the sum of charges must be zero (electroneutrality condition):

X
zici þ

X
zmcm ¼ 0 (3.115)

– Water between both phases is distributed according to its thermodynamic

equilibrium:

DmW ¼ 0 (3.116)

This last condition is easily fulfilled in isobaric systems (Dp ¼ 0) and in the case

of free water movement. This applies for animal cells, which to some extent are

able to swell or shrink. The volume of plant cells is limited by the rigid cell wall. In

this case a so-called Donnan-osmotic pressure may occur.

These basic equations can be combined and solved for particular parameters.

Equation 3.114 allows us to calculate the relation of the activities of the exchange-

able ions inside and outside the cell as a function of the phase potential difference

Dc. If the activity of a univalent anion is denoted by aA (zA ¼ �1), and that of the

corresponding cation by aC (zC ¼ +1), it follows:

aIA
aIIA

¼ aIIC
aIC

¼ e

FDc
RT � r (3.117)

The so-defined parameter r is known as the Donnan ratio. According to

Eq. 3.117, it is related to the Donnan potential in the following way:

Dc ¼ RT

F
ln r (3.118)
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The Donnan potential (Dc) is substantially determined by the amount of

nonexchangeable charged components in the phases, as reflected in condition

(3.115).

Let us now consider the situation with just a single kind of cation (C, with

zC ¼ +1), and a single kind of anion (A, with zA ¼ �1), and only one kind of

charged component (M, with zM) inside the cell. In this case, the equation of

electroneutrality of both phases, according to Eq. 3.115 can be written easily:

cIC � cIA þ zIMc
I
M ¼ 0

cIIC � cIIA ¼ 0

(
(3.119)

This system of equations can be solved by reorganizing it and dividing one by

the other:

cIA
cIIA

¼ cIC þ zIMc
I
M

cIIC
(3.120)

If the activity coefficients of the ions in both phases are equal (i.e., ai ¼ ci), one
can substitute the Donnan ratio (Eq. 3.117) in this equation:

r ¼ 1

r
þ zIMc

I
M

cIIC
(3.121)

Re-arranging this, a simple quadratic equation for r is obtained:

r2 � zIMc
I
M

cIIC
r � 1 ¼ 0 (3.122)

which can be solved in the usual way:

r ¼ zIMc
I
M

2cIIC



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zIMc

I
M

2cIIC

� �2

þ 1

s
(3.123)

The dependence of the Donnan ratio (r) for this simplified case on the expression
zIMc

I
M

2cII
C

is shown in Fig. 3.18. Considering the corresponding definition (3.117), it is

clear that the negative values of the Donnan ratio (r) (blue curve) have no real

meaning. Therefore, only the positive sign of the root in Eq. 3.123 is of interest. For

the case zIM cIM ¼ 0 it becomes r ¼ 1 and Eq. 3.118 gives Dc ¼ 0. If the

nonexchangeable components are negatively charged (zIM < 0), then r < 1. This

gives a negative Donnan potential (Dc < 0). Conversely, the value zIM > 0 means

r > 1 and therefore Dc > 0.

A reduction of the ionic strength in the external solution, i.e., a reduction of cIIK,

leads to an increase in the absolute value of the ratio
zIMc

I
M

2cII
C

. If zIM < 0, this means a
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shift ofDc in a negative direction, and vice versa, if zIM > 0, a reduction of the ionic

strength causes an increase in the Donnan potential. The absolute value of the

Donnan potential, therefore, increases when the charge concentration (zIM cIM) is
increased, as well as when the ionic strength in the external solution (cIIC) is reduced.

It should be noted, however, that the Donnan potential can only be measured

using reference electrodes with salt bridges (see Fig. 3.16), but not with simple

Ag/AgCl electrodes. In fact, if the whole electrochemical system, consisting of

reversible electrodes and both electrolyte phases, is in thermodynamic equilibrium,

no electromotoric force (emf) can occur. Using electrodes with salt bridges, how-

ever, an emf emerges as the difference in the liquid junction potentials at the tops of

the reference electrodes that are not in equilibrium. This is called the “indirect

method” for determining the Donnan potential. The same is possible by measuring

the pH difference between both systems.

Donnan equilibrium not only occurs in phases which are bounded by a mem-

brane but is also of particular importance in various colloidal systems and matrices

consisting of charged molecules. It determines the swelling and shrinking of these

phases as a result of Donnan-osmotic processes.

Further Reading

Overbeek 1956; Dukhin et al. 2004.

3.2.5 The Donnan Equilibrium in Biological Systems

Although the living system in general and particularly living cells are not in

thermodynamic equilibrium, we already pointed out that in fact a number of

subsystems nevertheless fulfill equilibrium conditions. Therefore, there exist a

number of Donnan systems which are worthy of consideration.

Fig. 3.18 Plot of Eq. 3.123.

Red curve – positive, blue
curve – negative values of the
root expression

146 3 Energetics and Dynamics of Biological Systems



One example concerns the distribution of ions near the fixed charges of the

membrane surface coat. This means the extension of the theory of electric double

layers (Sect. 2.3.5, Fig. 2.43), to real conditions in the layer of glycoprotein and

glycolipid molecules at the surface of most cells (Sect. 2.3.6, Fig. 2.48). Further-

more, this is quite important in order to calculate the conditions of intercellular

clefts, and accordingly the Donnan-osmotic behavior of the extracellular space in

tissue (Fig. 3.34). In the same way, despite the fact that in most animal cells Na+ and

K+ ions are actively pumped, others, like Cl�, as well as water, could be freely

exchangeable. Therefore, a Donnan equilibrium occurs as a result of these perme-

able ions. This also concerns the equilibration of water, resp. volume regulation. In

this case, however, not only the intracellular proteins are to be considered as

carriers of nonexchangeable charges, but additionally the charges of Na+ and K+

are quasi “fixed.” Even if the transmembrane potential is determined by diffusion

processes (see Sect. 3.3.3), or electrogenic pumps (Sect. 3.4.1), the relation between

Dc, the distribution of freely exchangeable ions like Cl� or pH, and subsequently

the volume (V) can be calculated in a similar way.

Furthermore, Donnan equilibrium may occur if the cell membrane is occasion-

ally opened to ions by an ionophore, by a toxin, or by any other influences. A living

cell will also shift slowly towards a Donnan equilibrium, if, as a result of low

temperature or a chemical blocker, the ATP-driven ion pumps are inhibited.

A typical example of this is the distribution of ions in erythrocytes of blood

preserves, stored over a longer period of time. These situations occur not only

under experimental conditions, but sometimes also in vivo.

Similar Donnan potentials are established in biocolloids like the eye lense or

articular cartilage. The fixed charges of the proteoglycans in this case effect the

mechanical behavior of articular cartilage by Donnan-osmotic pressure.

In most of these cases the Donnan equilibrium can be considered as a sort of

quasi-equilibrium state (see Sect. 3.1.4). Figure 3.8 demonstrates the time hierarchy

of characteristic rate constants of various biological processes. In human

erythrocytes, and in most animal cells, as a rule, the distribution of Cl� ions between

internal and external media is passive. The same is true for the equilibration of pH.

These processes of equilibration are very fast, and their stationary state can be

calculated according to the Donnan equilibrium. This situation is called a “quasi”
equilibrium state, because over a longer time interval the concentrations of potas-

sium and sodium may shift. The equilibration of Cl� concentration, and the pH,

therefore follows the slow shift in Na+ and K+ concentration, and can be considered

as in equilibrium only for a limited time of observation (see Sect. 3.1.4, Fig. 3.8).

Equation 3.120 in the previous chapter allows us to understand the behavior of a

Donnan system in general, but in fact, it reflects an extremely simplified situation.

It has not been taken into account that according to the condition of iso-osmolarity

(Eq. 3.116), changes in cell volume could appear. Volume changes, however,

would lead to changes in intracellular concentrations, and consequently in activity

and osmotic coefficients of all participants.
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Furthermore, according to the Donnan condition, a pH equilibrium between the

two phases in this system occurs. A pH change, however, influence the charges of

organic molecules. In its simplest form, this dependence can be expressed as:

zM ¼ �zM0ðpH� pHisoÞ (3.124)

Near the isoelectric point (pH ¼ pHiso) the total molecule is uncharged

(zM ¼ 0). Below this point (pH < pHiso), zM becomes positive, and above it

(pH > pHiso), zM becomes negative (see Sect. 2.2.8, Figs. 2.30 and 2.31).

Considering all of these relations, one obtains a system of nonlinear equations

that can be solved by iteration. Some basic stationary properties of such a feedback

system will be demonstrated for the case of Donnan equilibrium in human

erythrocytes. As already mentioned, this situation can occur under conditions of

blood storage or as a result of other treatment.

The most important nonpenetrating charge component in erythrocytes is hemo-

globin. In vivo, it has a concentration of 7 mM. Its isoelectric point is pHiso ¼ 6.8

(at 25�C) and zM0 ¼ 10.5 eq/mol. The Donnan potential (Dc) of erythrocytes in
solutions of various NaCl concentrations is shown in Fig. 3.19. The constant

osmotic pressure of 300 mosmol of the external solution is maintained by various

concentrations of sucrose. The intracellular pH of the erythrocytes depends on the

pH value of the external solution which is indicated on the abscissa, as well as on

the Donnan potential itself. At the isoelectric point of hemoglobin, the Donnan

potential becomes zero (Dc ¼ 0). The highest potentials, both negative and posi-

tive, are obtained at the greatest distances from the isoelectric point, and in

solutions with the lowest NaCl concentrations.

The volume changes in these cells are shown in Fig. 3.20. The volume, expressed

here as the percentage of the in vivo volume of erythrocytes, is indicated as a function

of the NaCl concentration of the external solution at constant pH ¼ 7.4. It is

important to note that independently of the external NaCl concentration, the osmotic

pressure of the external medium is always adjusted to the isotonic osmotic pressure:

Fig. 3.19 The Donnan potential (Dc) of human erythrocytes in isotonic NaCl-sucrose solutions

dependent on external pH. The curves represent situations for NaCl solutions of 30, 50, and

100 mM (p ¼ 300 mosmol, T ¼ 25�C) (After Glaser et al. 1980)
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p ¼ 300 mosmol. In spite of this, the cells shrink in solutions of low ionic strength.

An isotonic condition of the incubation medium, therefore, is no guarantee for the

maintenance of a normal cell volume! A normal volume is achieved only in a solution

containing about 20 mosmol sucrose and 140 mMNaCl. In this case, the sucrose just

compensates the osmotic pressure of the hemoglobin, which has a comparatively

high osmotic coefficient (see Fig. 3.13). Furthermore, it is interesting that the volume

curve rises steeply at high ionic strengths. Mathematically, no results can be obtained

from the equations assuming conditions of pure (isotonic!) 152 mM NaCl solutions.

In this case, the volume would become infinitely large. The experiments indicate that

erythrocytes in solutions of pure electrolytes undergo hemolysis, if the membrane

becomes permeable for these ions. This is known as Donnan-osmotic hemolysis. As
indicated in Fig. 3.20, this can occur even in isotonic solutions.

To determine experimentally whether a cell is in a state of Donnan equilibrium,

the relation between the internal and external ionic activities must be determined.

For a Donnan state to be present, the Donnan ratios (r) from Eq. 3.117 must

correspond. For most cells in vivo, the ratio obtained using the sum of the sodium

and potassium ions [(aIK + aINa)/(a
II
K + aIINa)] may be close to that for a Donnan

equilibrium, but this would not be the case for either Na+ or K+ alone. Active

transport changes their relative concentrations in opposing directions.

Similar calculations to those demonstrated here for the case of erythrocytes can

be applied to other cells, taking into account the membrane potential. In these cases,

however, the situation will be complicated by the charges and structure of

organelles and the endoplasmatic reticulum net.

Further Reading

Glaser and Donath 1984; Sun et al. 2004; Fraser and Huang 2007.

Fig. 3.20 Donnan-osmotic alterations of the relative volume (V) of human erythrocytes as a

function of external NaCl concentration in isotonic NaCl-sucrose solutions (pH ¼ 7.4, T ¼ 25�C).
The osmotic pressure of the solutions with different NaCl-concentrations is always balanced by

sucrose, adjusting to p ¼ 300 mosmol. At c ¼ 152 mM, the solution contains only NaCl, without

sucrose. The volume is given as the percentage of the in vivo volume of erythrocytes (after Glaser

et al. 1980, redrawn)
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3.3 Phenomenological Analysis of Fluxes

As mentioned repeatedly, biological functions result in particular molecular pro-

cesses and appear finally in the form of visible and measurable phenomena. This

circumstance becomes apparent especially in various membrane functions as will

be described in the next chapters. In a strict sense, the transport of ions and

molecules through biological membranes must be considered as a highly specific

process of molecular interaction of these species with the structure of a particular

transport protein (see Sect. 3.4.5). Nevertheless, the classical approaches based on

phenomenological thermodynamic considerations have been used extensively and

with considerable success to investigate various processes of molecular and ion

transport, and their consequences in volume regulation and various electric

phenomena.

A flux, as defined phenomenologically in Sect. 3.1.3, is the amount of a sub-

stance, which passes in a perpendicular direction through a definite area of a surface

in a unit of time. Its basic measure therefore, is: kg s�1 m�2, or better: mol s�1 m�2.

In the following discussion, the molar flux of a substance will be denoted by the

symbol J.

When considering fluxes through cell membranes difficulties may arise in some

cases if the exact surface area of a cell is not known. In these cases modified units

are used, such as: “mol s�1 per cell,” “mol s�1per liter of cells,” “mol s�1 per liter of

cell-water,” etc. As the unit of time, instead of seconds, minutes, hours, or even

days are frequently used. Such units are quite convenient for some physiological

investigations. However, it is not possible to substitute such units directly into the

thermodynamic equations.

3.3.1 The Flux of Uncharged Substances

Let us first consider the diffusion of an uncharged substance (i), not considering any
coupling with other fluxes. Using Eqs. 3.45, 3.49, and 3.33, gives

Ji ¼ LiXi ¼ �Li grad mi ¼ �Li grad ðm0i þ RT ln aiÞ (3.125)

In order to calculate the gradient of the chemical potential the dependence of the

parameters on their position in space must be considered. Assuming constant

temperature (grad T ¼ 0), and constant pressure (grad p ¼ 0), the gradient of the

standard potential (grad m0i ) also becomes zero. Equation 3.125 therefore can be

written as:

Ji ¼ �Li RT grad ln ai ¼ � LiRT

ai
grad ai (3.126)
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(To explain this rearrangement: the differential operator “grad” can be handled

like a deviation d/dx. Then the rules of sequential differentiation are applied).

As has already been discussed in Sect. 3.1.3 a flux can also be expressed by the

parameters concentration (ci) and velocity (vi) (Eq. 3.47). From this we came to an

equation which includes the mobility (oi) (Eq. 3.53). If we consider, furthermore,

that Xi is not a simple mechanical force, but results from the gradient of a chemical

potential determined by molar concentrations, the Avogadro number (N) must be

included.

Ji ¼ cioi

N
Xi (3.127)

Comparing Eq. 3.125 and 3.127 results in:

Li ¼ cioi

N
(3.128)

Suppose ci � ai, then the combination of Eq. 3.128 with 3.126 gives:

Ji ¼ �oi

N
RT grad ci ¼ �oikT grad ci (3.129)

Introducing the diffusion coefficient one gets Fick’s first law of diffusion:

Ji ¼ �Di grad ci (3.130)

If there is only a one-dimensional concentration gradient in the x-direction this

equation simplifies to:

Jix ¼ �Di
dci
dx

(3.131)

The mobility (oi) of an almost spherical molecule can be interpreted mechani-

cally by referring to Stoke’s law (Eq. 3.54). By definition it has the unit: m s�1 N�1.

In Sect. 2.1.6 we introduced the diffusion coefficient (Di) in the context of the

translational movement of molecules. This led to relations between the diffusion

coefficient, mobility (oi), and the molar mass (Mi) (see Eqs. 2.38–2.40).

We introduced the diffusion coefficient as Di ¼ oikT. Its unit therefore is

m2 s�1. Using the measure mol m�3 m�1 ¼ mol m�4 for the concentration gradient

in Eq. 3.130 or Eq. 3.131, one obtains the unit mol s�1 m�2 for the flux, according to

its definition.

In addition to Fick’s first law of diffusion, which gives the flux as a function of the

concentration gradient, Fick’s second law allows one to determine the establishment

of a concentration gradient of a given substance (ci) as a function of time (t).
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It is a partial differential equation of the second order which for diffusion in one

direction is:

@ci
@t

� �
x

¼ D
@2ci
@x2

� �
t

(3.132)

This equation is used to calculate a concentration gradient which occurs when

diffusion takes place in a homogeneous phase.

In contrast to this case where a continuous gradient of concentration occurs, in

membrane systems various discontinuities in concentration are to be expected.

This means that the function ci(x) could become rather complicated. Schematically,

this is illustrated in Fig. 3.21. The simplest case is shown by the red line where

phase I contains a solution with concentration cI and correspondingly, cII is the

concentration in phase II. The concentration in the membranes falls linearly with a

slope of Dc/Dx.
The blue line in Fig. 3.21 shows an irregular concentration pattern. In this case

effects are considered which can occur at the membrane surface as well as in its

interior. The deviation A marks an adsorption of the substance at the membrane

surface, or a change in concentration of ions in an electric double layer. The

effective thickness of this layer is very small, being less than 10 nm. Inside the

membrane (Fig. 3.21B), deviations of the linear concentration profile can occur by

differences of the mobility of the substance in the x-direction or, in the case of ion

transport, even by dielectric inhomogeneities.

In special cases diffusion layers, also called unstirred or boundary layers, may

occur near the surface of membranes (Fig. 3.21C). These are near membrane

regions without streaming and convections. In this region substances transported

through the membrane, or involved in a chemical reaction, can move only by

diffusion. An increase or decrease of local concentration can occur, which depends

on the relationship between the transport or reaction rate, introducing substance into

the region, and the rate of its removal, i.e., the rate of diffusion. In this case a

stationary concentration gradient is built up.

In systems with artificial ion exchange membranes, large diffusion layers can be

indicated by special interference methods or by microelectrodes. In contrast to

Fig. 3.21 Possible functions

c(x) in a membrane system.

Red – ideal case, blue –
disturbed case, caused by

the following reasons:

(a) Adsorption of substance

at the membrane surface;

(b) differences in the mobility

of the substance inside the

membrane; (c) diffusion layer

caused by imperfect stirring

at the surface
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speculation in earlier papers, in vivo such layers are mostly a lot less than 1 mm.

These layers may significantly affect biochemical reactions or transport processes

of biological membranes. They can become important especially in cases where the

cell surface is covered by microvilli or special caverns, or where reactions take

place in the intercellular space (Fig. 3.34). Even the occurrence of diffusional layers

of protons near membranes is discussed.

Let us now consider the simplest case, represented by the solid line in Fig. 3.21

in more detail. Let the concentration gradient (dci/dx) inside the membrane be

constant and equal Dci/Dx, whereas: Dci ¼ cIIi � cIi . In this case Eq. 3.131 becomes

Ji ¼ �Di
Dci
Dx

� �PiDci (3.133)

The parameter Pi ¼ Di/Dx is the permeability coefficient measured in m s�1.

The same parameter will be used in Sect. 3.3.3 to calculate fluxes of ions. It is

important to stress that this is the same parameter with an identical definition.

Let us now consider a system with flux interactions. In this case the flux coupling

must be taken into account as discussed in Sect. 3.1.3. To demonstrate these

approaches, we will consider only the simplest case of a binary system, represented

for example by a flux of an uncharged substance (Js) and its solvent, the flux of

water (Jw). The driving forces of both fluxes are the negative gradients of their

chemical potentials. To simplify the derivation we will use simply their differences

Dms and Dmw as driving forces.

In a first step we must write down the equation for the dissipation function

according to the rule of Eq. 3.64:

F ¼ JwDmw þ JsDms (3.134)

In this case F is an integral parameter for the whole membrane thickness Dx.
In the next step we will modify this equation in such a way that instead of the

parameters Dms and Dmw, forces are introduced that are directly measurable.

Let us first consider the difference of chemical potential of the water (Dmw).

Dmw ¼ Dm0wx þ RT ln
xIw
xIIw

(3.135)

In Sect. 3.2.1 we discussed the chemical potential of water in detail and

considered in particular its dependence on mole fraction (xw) as well as on pressure
(p). Now we will make use of these derivations. Using Eqs. 3.88 and 3.89, as well as

the definition of osmotic pressure, we come to:

Dm0w ¼ �VwDp and : RT ln
xIw
xIIw

¼ � �VwDp (3.136)
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where �V is the partial volume of water, Dp – the difference of hydrostatic pressure,

and Dp – the difference of osmotic pressure. Equation 3.135 therefore can be

rewritten as

Dmw ¼ �VwðDp� DpÞ (3.137)

Let us now consider the other chemical potential difference in Eq. 3.134, namely

Dms. This parameter depends on pressure difference in the same way as the

difference of the chemical potential of water. According to Eqs. 3.135 and 3.136

one can write:

Dms ¼ �VsDpþ RT ln
cIs
cIIs

(3.138)

The second term of this equation can be expanded as a series using the common

rule for parameters x > 0:

ln x ¼ 2
x� 1

xþ 1

� �
þ 1

3

x� 1

xþ 1

� �3

þ 1

5

x� 1

xþ 1

� �5

þ . . .

" #
(3.139)

Now we substitute for x the value cI/cII. With good approximation we are

justified in retaining only the first term of this series:

ln
cI

cII
¼ 2

cI

cII � 1
cI

cII þ 1

 !
¼

cI�cII

cIþcII

2
¼ Dc

�c
(3.140)

This shows that the logarithm of the ratio of the two concentrations, or even

activities, can be replaced by the difference in concentration (Dc) divided by the

arithmetic mean (�c) of the concentrations of the two phases. This connection is not

only true approximately, as seen by this expansion of the series, but it can be proved

mathematically that it is exactly equal.

Relation (3.140), applied to Eq. 3.138, together with the Van’t Hoff equation for

osmotic pressure: Dp ¼ RTDc (Eq. 3.99), gives

Dms ¼ �VsDpþ 1

�cs
Dp (3.141)

Now we have really found reasonable expressions for the differences of the

chemical potentials, and using them we can rearrange the equation for the dissipa-

tion function (Eq. 3.134). Introducing Eqs. 3.138 and 3.141 into Eq. 3.134 we get:

F ¼ Jw �VwðDp� DpÞ þ Js �VsDpþ 1

�cs
Dp

� �
(3.142)
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and after rearrangement:

F ¼ DpðJw �Vw þ Js �VsÞ þ Dp
Js
�cs
� Jw �Vw

� �
(3.143)

The expressions in parentheses can be regarded as new flux variables. Flux was

defined as the amount of a substance in moles that traverses a surface in a unit of

time. Multiplying this parameter by the partial molar volume ( �V), one obtains a

volume flow. Let us define a total volume flux (JV) as the sum of individual volume

fluxes of all components:

JV ¼ Jw �Vw þ Js �Vs (3.144)

To illustrate the meaning of the second term of Eq. 3.143, let us remember the

relation Ji ¼ civi (Eq. 3.47). The term: JS/�cs in Eq. 3.143 therefore is an expression
for the velocity of the substance (vs). The volume flow of the solvent (Jw �Vw) can

also be considered as the velocity of it (vw). From this it follows:

Js

�cs
� Jw �Vw ¼ vs � vw � JD (3.145)

The parameter JD, called exchange flux is therefore the difference between the

velocity of solute relative to the solvent.

As a result of these transformations we finally obtain a dissipation function

which contains measurable parameters:

F ¼ JVDpþ JDDp (3.146)

This makes it possible to write down a flux matrix following the pattern of

Eq. 3.58:

JV ¼ LV Dpþ LVDDp

JD ¼ LDVDpþ LDDp
(3.147)

This equation shows that in the case of the transport of a solution with a single

uncharged substance, the membrane permeability is determined by four

coefficients: LV, LVD, LDV, and LD. The driving forces are the osmotic (Dp) and
hydrostatic (Dp) pressures.

Some of the coefficients used in these phenomenological equations can easily be

illustrated: The parameter LV shows for example how fast the solution passes

through the membrane in response to a hydrostatic pressure difference (Dp).
Introducing the conditions Dp ¼ 0 and Dp > 0 in the upper part of Eq. 3.147 it

becomes: LV ¼ JV/Dp. This means that LV is a mechanical filtration coefficient or a
kind of hydraulic conductivity.
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Under the same conditions the substance can also be forced through a filter. In

this case the second line in Eq. 3.147 gives LDV ¼ JD/Dp. Because of this, LDV is

called the ultrafiltration coefficient.
The flux matrix (3.147) makes it possible to describe the time dependence of an

osmotic system. Figure 3.22 shows how the pressure in a Pfeffer’s cell, measured by

the height of the water column in the vertical tube changes with time. Only in the

case of a semipermeable membrane (red line), will a thermodynamic equilibrium

with a constant pressure difference be achieved. If in addition to the solvent the

membrane allows some of the solute to pass through then there will be a decline in

the pressure after the initial rise. The osmotic pressure inside the osmometer

will continuously fall (blue line). In this case a state without any volume flux

(dV/dt ¼ JV ¼ 0) is achieved only for a short time. For this situation it follows

from the first line of the flux matrix (Eq. 3.147):

LVDpþ LVDDp ¼ 0 (3.148)

and furthermore:

ðDpÞJV¼0 ¼ � LVD
LV

Dp (3.149)

In Sect. 3.2.2 we introduced Staverman’s reflection coefficient (s). Relating
Eqs. 3.108 to 3.149, the following connection between the reflection coefficient and

the coupling coefficients results:

s ¼ � LVD
LV

(3.150)

For a semipermeable membrane with: s ¼ 1, it therefore holds that:

LVD ¼ �LV

Fig. 3.22 The height of the water column in a Pfeffer osmometer dependent on time in two

experiments under different conditions: Pfeffer’s cell is closed by a semipermeable membrane (M)

(red line), and: solvent as well as solute can penetrate the membrane (blue line). The conditions

with stationary pressure in this manometer (dh/dt ¼ 0, i.e., dp/dt ¼ 0) mean at the same time

stationary volume (dV/dt ¼ JV ¼ 0)
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A better illustration of this parameter allows the following consideration: A

solution will be forced through a membrane by a hydrostatic pressure (Dp > 0)

without any osmotic difference (Dp ¼ 0). Using these conditions and dividing the

second equation of the flux matrix (3.147) by the first one, we obtain:

JD
JV

¼ LDV
LV

¼ �s (3.151)

According to Eq. 3.145, JD can be replaced by the difference (vs � vw). For very

dilute solutions it holds: JwVw � JsVs. In this case Eq. 3.151 can be written as:

s ¼ vw � vs

vw
(3.152)

This equation has already been discussed in Sect. 3.2.2 (Eq. 3.109).

The deviations shown here clearly demonstrate that the consideration of more

complex systems, for example solutions with more components, would lead to a

huge number of parameters and relations.

This theory of coupled fluxes has been widely used to explain the stationary

volume and stationary pressure observed in experiments with cells under nonequilib-

rium conditions. Such experiments have been carried out mostly on red blood cells

and on plant cells. Human red blood cells, placed initially in an isotonic solution,

shrink immediately when the osmotic pressure of the external solution is increased by

adding a permeable substance i (sI < 1). Then however, if the substance passes

through the membrane, the cell usually reverts to its initial volume, as illustrated in

Fig. 3.22 by the blue line. Such experiments with fast volume changes are undertaken

to determine the reflection coefficient using stop-flow techniques.

Further Reading

Katchalsky and Curran 1965; Stein 1990; Zimmermann and Neil 1989. Papers on

unstirred diffusion layers: Barry 1998; Evtodienko et al. 1998; Pohl et al. 1998.

3.3.2 Fluxes of Electrolytes

The diffusion of ions is governed by the same fundamental laws as fluxes of

uncharged substances (see Eq. 3.125).

Ji ¼ LiXi ¼ cioi

N
Xi ¼ � cioi

N
grad ~mi (3.153)

In the case of electrolyte fluxes the driving force is induced by the negative

gradient of the electrochemical potential (~mi). The coupling coefficient (Li) again
can be considered as a product of concentration (ci) and mobility (oi/N).
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Let us first consider the expression grad ~mi. For a concentration gradient only in

the x-direction, instead of the differential operator grad, the differential quotient

can be applied:

d~mi
dx

¼ d

dx
ðm0i þ RT ln ai þ ziFcÞ (3.154)

In order to simplify the equation, let the solution be close to ideal, i.e., let the

activity coefficient be: fi � 1, and therefore ai � ci. Furthermore, let the system be

under isobaric (grad p ¼ 0), and isothermic (grad T ¼ 0) conditions. In this case

Eq. 3.154 becomes

d~mi
dx

¼ RT

ci

dci
dx

þ ziF
dc
dx

(3.155)

which when combined with Eq. 3.153, results in

Ji ¼ � cioi

N

RT

ci

dci
dx

þ ziF
dc
dx

� �
(3.156)

or modified using the diffusion coefficient according to Eqs. 3.129, 3.130

Ji ¼ �D
dci
dx

þ ziFci
RT

dc
dx

� �
(3.157)

This is the Nernst–Planck equation. It contains the differential quotients of the
concentration [ci(x)], and of the electrical potential [c(x)]. These differential

quotients can be integrated only if the corresponding functions are known. This

problem has already been discussed with regard to the concentration [ci(x)] in

Sect. 3.3.1 (see Fig. 3.21). In contrast to the case of Fick’s equation, here the

function c(x) must be known in addition (see Fig. 2.48).

The simplest approach is the consideration of linear gradients. This corresponds

for example to a membrane with large, water-filled, and noncharged pores where the

ions can move freely as in bulk water. Integrating Eq. 3.157 for these conditions,

instead of the differential quotients, simple ratios of differences appear, and instead

of concentration ci the mean concentration of both phases [�ci ¼ (cI + cII)/2] appears.

Jix ¼ �D
Dci
Dx

þ ziF�ci
RT

Dc
Dx

� �
(3.158)

Or, using the permeability coefficient: Pi ¼ D/Dx (see Eq. 3.133):

Jix ¼ �Pi Dci þ ziF�ci
RT

Dc
� �

(3.159)

In 1943, D. E. Goldman integrated the Nernst–Planck equation, supposing only

the so-called constant field conditions, i.e., assuming: E ¼ �grad c ¼ const.
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The concentration profile results from the bulk concentrations in both phases, and

from its passive distribution in the electric field. Integrating the Nernst–Planck

equation (3.157) with these conditions, one gets the following expression:

Ji ¼ �Pib
cIi � cIIi e

b

1� eb
with : b ¼ ziF

RT
Dc (3.160)

The function J ¼ f(Dc) is illustrated in Fig. 3.23. It considers the flux of

a monovalent cation (zi ¼ +1) penetrating the membrane with a permeability

Pi ¼ 10�7 ms�1. Let the flux (Ji) be positive if it is directed phaseI ) phaseII.

A negative Ji therefore, means that the flux is in the opposite direction. The

potential gradient is negative per definition, if c decreases from phase I to phase II.

The red line in Fig. 3.23 represents a cation flux which is driven only by the

electric field without a concentration difference (cIi ¼ cIIi ¼ 100 mM). In this case,

the flux vanishes (Ji ¼ 0) if there is no potential difference (Dc ¼ 0).

If there is an additional driving force resulting from a concentration gradient, the

curve for example is displaced towards one of the two blue lines. In these cases an

ion flux exists even if Dc ¼ 0. If cIi ¼ 100 mM, cIIi ¼ 10 mM, and Dc ¼ 0, there is

a flux from I to II (i. e. Ji > 0). When the concentrations are reversed, Ji becomes

negative according to the given definition. The blue lines cut the abscissa at +60 mV

and �60 mV, respectively. These points mark where the driving force due to the

electric field exactly balances the driving force due to the concentration gradient.

This corresponds to the equilibrium situation with Ji ¼ 0, described by the Nernst

equation (Eq. 3.113).

In fact, the Goldman equation is a good approach even in cases, where the

linearity of the function c(x) is not exactly realized. This equation is used fre-

quently in various physiological calculations.

Fig. 3.23 The flux (Ji) of

a univalent cation (zi ¼ +1,

Pi ¼ 10�7 ms�1) driven by

a concentration, as well as

an electrical potential

gradient according to the

Goldman equation (3.160).

The concentrations in phases I

and II are listed on the curves.

Description in the text
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Furthermore, in recent calculations electrostatic interactions of the ions being

transported have been taken into account, as well as the fixed charges of the pores.

For this, the Nernst–Planck approach is combined with the Poisson equation,

predicting the field divergency (∇2c) as a function of the three-dimensional charge

distribution r(x,y,z). In this case the generalized Poisson equation (see Sect. 2.2.4,

Eqs. 2.51–2.53) must be written as:

r2c ¼ 1

ee0
F
Xn
i¼1

cizi þ r

 !
(3.161)

where the sum term gives the charge density of mobile ions in the electrolyte, and r
represents the fixed charges on the boundary of the pore. This expression can be

combined with Eq. 3.157, written also in the general form:

Ji ¼ �D rCi þ ziFci
RT

rc
� �

(3.162)

This approach, known as Poisson–Nernst–Planck theory (PNP-Theory), can be

solved analytically only in some very specialized cases. Using it to calculate

transport in discrete ion channels, numerical computer simulations are required.

In any case, the following limitations of these approaches must be taken into

account:

– In fact knowledge of the appropriate dielectric constant (e) (see Eq. 3.161) for

channels has not as yet been established. For calculation of the molecular

structures of proteins and lipids, usually the dielectric constant of e ~ 2 is

applied, in electrolyte medium that of water: e ~ 80.

– Special dielectric effects, such as dehydration of the ions inside the channels,

specific short-range interactions of ions with polar amino-acid side chains at

these locations, etc., are not taken into account.

– The problem is reduced to a steady-state situation. Ion permeation in channels,

however, is basically a time-dependent process. As an ion moves through the

channel, the forces acting on it change.

In addition to these new approaches, a “classical” one should not be forgotten: In

1949 Hans Ussing introduced an equation which has been used even in recent

physiological publications. It makes it possible to calculate the ratios of ionic fluxes

independently of the functions c(x) and c(x).
In this context a term must be defined that we will need in further considerations:

The flux that is measurable directly through changes of chemical concentrations is

called the net flux (J). Using radioactive isotopes it is possible to indicate that this

net flux in fact results from the difference of two opposite unidirectional fluxes J12
and J21:
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J ¼ J12 � J21 (3.163)

In contrast to the unidirectional fluxes, the direction of which is indicated by the

subscripts (for example: J12, J21), the net flux will be defined as positive, as in the

example of Fig. 3.24, if it takes place in the direction corresponding to Eq. 3.163.

It must be noted that these are examples of simple diffusion processes based on

thermodynamic fluctuations. Later in Sect. 3.4.1 (see Fig. 3.25) we will consider

systems of co-transport through biological membranes, which shows the same

kinetics but which must be treated thermodynamically with completely different

approaches. These two kinds of transport processes therefore must not be mixed.

Considering Eq. 3.163, one can write Fick’s equation (Eq. 3.133) in the follow-

ing way:

J ¼ J12 � J21 ¼ �P Dc ¼ PðcI � cIIÞ ¼ P cI � P cII (3.164)

From this we can conclude with certain justification:

J12 ¼ PcI; J21 ¼ PcII (3.165)

This, by the way, resembles the approach of compartment analysis and reactions

of the first order as will be used in Sect. 5.1.1.

To calculate unidirectional fluxes of ions one could use the same approaches as

in Eq. 3.165, but just introducing a kind of electrochemical concentration (~c). This
parameter, as we will indicate later, has no further relevance. The definition results

from the following equation:

~m ¼ m0 þ RT ln cþ zFc¼! m0 þ RT ln ~cþ zFc0 (3.166)

Therefore: ~c ¼ c, if c0 ¼ c. This means that a kind of zero-potential will be

established, whatever it is. From this definition follows:

ln ~c ¼ ln cþ zF

RT
ðc� c0Þ (3.167)

and:

~c ¼ c e
zF
RT ðc� c0Þ (3.168)

Fig. 3.24 The net flux (J), as the sum of the unidirectional fluxes J12 and J21
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This equation is of little use since the reference potential c0 is unknown.

However, if this relation is substituted in Eq. 3.165, and if the ratio of the

unidirectional fluxes are calculated, all unknown parameters cancel:

J12

J21
¼ cI

cII
e
zF
RT ðcI � cIIÞ (3.169)

(To avoid the accumulation of subscripts we ignored in these derivations the

index for the specific substance i).
This formula is known as Ussing’s equation or Ussing’s flux ration criterion

which relates unidirectional fluxes to concentrations and electrical potential

differences. All parameters of this equation can be measured and the validity of the

equation therefore, can be checked experimentally. As preconditions for this equation

only differences of concentrations and electrical potentials are considered. If the

relation between two measured unidirectional fluxes does not agree with the results

calculated by these gradients, then additional driving forces are involved. This could

be a hint at coupling processes or of any kind of active transport processes.

Further Reading

Goldman 1943; Kontturi et al. 2008; Roux et al. 2004; Syganov and von Klitzing

1999; Ussing 1949; Zhou and Uesaka 2009.

3.3.3 The Diffusion Potential

The diffusion of an electrolyte, in general, can be considered as a separate move-

ment of the dissociated ions along their particular electrochemical gradient, cou-

pled, however, with the electric field resp. the potential difference Dc. Cations and
anions, however, may have different mobilities (wi). The slower diffusion types of

ions will lag behind the faster ones. This produces a local potential difference called

the diffusion potential, retarding the faster ions and speeding up the slower ones.

Diffusion potentials can occur in homogenous solutions as well as between two

phases separated by a membrane which is permeable for the ions.

An equation for the diffusion potential can be derived, postulating the

electroneutrality of the sum of all ion fluxes. In this case the cation flux (Jc) induces

a flow of charge (Jczc). In the case of electroneutrality, it must be compensated by

the charge transport of anions (JAzA):

JCzC þ JAzA ¼ 0 (3.170)

Now, we can use the flux equations derived in the previous Sect. 3.3.2. If linear

functions c(x) and c(x) are proposed, the simplest flux equations (Eq. 3.159) can be

used. Inserting them into Eq. 3.170, one obtains:
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zCPCDcC þ z2CF�cCPC

RT
Dcþ zAPADcA þ z2AF�cAPA

RT
Dc ¼ 0 (3.171)

Let us take into account that the concentration of the ions (cC, cA) depends on the
concentration of the salt (c), whereas cC ¼ vCc, and cA ¼ vAc. Introducing this, one
can rearrange Eq. 3.171 and resolve it for Dc in the following way:

Dc ¼ �RT

F

zCPCnC þ zAPAnA
z2CPCnC þ z2APAnA

� �
Dc
�c

(3.172)

or:

Dc ¼ RT

F

zCPCnC þ zAPAnA
z2CPCnC þ z2APAnA

� �
ln
cII

cI
(3.173)

The relation: Dc/�c ¼ ln(cI/cII) has already been introduced in Sect. 3.3.1 in

context with Eq. 3.140.

It is easy to understand that Eq. 3.173 will be transformed into the Nernst

Equation (Eq. 3.112), if the membrane becomes semipermeable, i.e., if PC ¼ 0, or

if PA ¼ 0.

A better approach for the conditions of membranes will be the flux equation,

derived by Goldman for conditions of constant electric field (see Sect. 3.3.2).

Introducing this Goldman equation (Eq. 3.160) into the equation for

electroneutrality of fluxes (Eq. 3.170), one gets the following expression:

PC
FDc
RT

cIC � cIICe
FDc
RT

1� e
FDc
RT

 !
þ PA

FDc
RT

cIA � cIIAe
�FDc

RT

1� e�
FDc
RT

 !
¼ 0 (3.174)

This equation can also be rearranged and solved for Dc. For this we first

transform the denominator of the fractions, using the expression:

1� e�x ¼ �e�xð1� exÞ

This leads to:

FDc

RT 1� e
FDc
RT

� � PC cIC � cIICe
FDc
RT

� �
� PA e

FDc
RT cIA � cIIAe

� FDc
RT

� �	 

¼ 0 (3.175)

When Dc ) 0 the expression in front of the square parentheses will not

approach zero. Therefore, the sum inside the parentheses must be equal to zero:

PCc
I
C � PCc

II
Ce

FDc
RT � PAc

I
Ae

FDc
RT þ PAc

II
A ¼ 0 (3.176)
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Which gives after some rearrangements:

e
FDc
RT ¼ PAc

II
A þ PCc

I
C

PAcIA þ PCcIIC
(3.177)

and:

Dc ¼ RT

F
ln
PAc

II
A þ PCc

I
C

PAcIA þ PCcIIC
(3.178)

This is the Goldman–Hodgkin–Katz equation which is commonly used in elec-

trophysiology to calculate diffusion potentials in living cells (mostly it is just named

theGoldman equation). This expression also becomes a Nernst equation (Eq. 3.112),

introducing the conditions of a semipermeable membrane (PA ¼ 0, or PC ¼ 0).

It is possible to extend this equation also for systems containing more than one

salt, i.e., various monovalent ions. To take into account the nonideal character of

solutions, chemical activities (ai) instead of concentrations (ci) can be used. In this

case the Goldman–Hodgkin–Katz equation can be written as follows:

Dc ¼ RT

F
ln

P
Anions

PAa
i
A þ

P
Cations

PCa
e
CP

Anions

PAa
e
A þ

P
Cations

PCa
i
C

(3.179)

When considering cells, the superscript i in this formula means “internal,” the

superscript e – “external” concentrations. Correspondingly: Dc ¼ ci � ce.

In a large number of papers experiments are described indicating the applicabil-

ity of the Goldman equation for various cells and membranes. Some limitations are

obvious, however, when this equation is applied to real cellular conditions. Mostly

these are already included in the conditions of the applied flux equation as discussed

previously.

The most important limitation comes from the assumption considering a free

diffusion of ions in a homogeneous and constant electric field. Even in the case of

large pores in the membrane this assumption is valid only with some

approximations. It must be taken into account that the thickness of a biological

membrane is just as large as the Debye–H€uckel radius of an ion. Additionally, the

coefficients of permeability are defined for large systems and can be used for

considerations of molecular systems only approximately.

As mentioned in Sect. 3.3.2, there exist a number of approaches that consider

local concentrations of ions directly at the membrane boundary, to calculate fluxes

and transmembrane potentials. This takes into account the influence of surface

potentials and electric double layers (see Sect. 2.3.5). It is possible to introduce

surface concentrations into the Goldman equation, instead of the concentration of

ions in the bulk phase, using Eq. 2.10 or Eq. 3.113, if the surface potential c0 is

known. In this case, however, the value Dc of Eq. 3.179 no longer means the
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potential difference between the two bulk phases, as measured in electrophysiology

by microelectrodes, but just between the inner and outer surface (see Fig. 2.48).

Thus, this is an indication that the diffusion potential of a membrane is in fact

controlled by local surface charges.

Further Reading

Goldman 1943; Katchalsky and Curran 1965; Syganov and von Klitzing 1999;

Fraser and Huang 2007.

3.4 Membrane Transport and Membrane Potential

The living cell and its internal compartments maintain a particular electrolyte state

which on the one hand guaranties constant conditions for all enzymatic processes,

whilst on the other hand, it acts as an accumulator of electrochemical energy. This

requires a complicated system of transporters in the membranes, which are particu-

larly specialized and precisely controlled by a system of interactions. Furthermore,

a number of receptor proteins transform external signals to internal information by

modification of their transport properties. In a highly specialized way, nerve and

muscle cells used the accumulated electrochemical energy for processes of excita-

tion. In this chapter we will concentrate just on transport of ions with regard to

transport of metabolites.

Numerous experimental investigations indicate an enormous variety of

transporters even in a single cell. This research during the second half of the last

century was supported strongly by the introduction of radioactive isotopes, later on

by fluorometric methods and especially by the use of patch-clamp measurements. In

the last decades, our knowledge on the molecular mechanisms of these transporters

and their control has developed rapidly thanks to studies involving X-ray crystal

analyses, and various high-resolution functional measurements.

3.4.1 Channels and Pumps: The Variety of Cellular Transport
Mechanisms

Figure 3.25 illustrates a functional classification of various types of ion transport

mechanisms in the membrane of cells and organelles. The differentiation between

pores and channels is rather unclear. Mostly the term “pore” is used to denote larger

membrane openings with low selectivity, which are for example produced by

electric pulses (electric break down, see Sect. 3.5.5) or by other influences. In

contrast “channels” are protein transporters, which are characterized by a certain

selectivity. In any case, fluxes through these kinds of transporters are governed by

the laws of electrodiffusion.
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Another type of passive transporters is so-called carriers or porters transporting
simultaneously two or more ions in a well-defined stoichiometric relation. Such

stoichiometrically coupled fluxes are called co-transports. There are two kinds of

co-transport systems: In the case of the symport, a strongly coupled flux of two

species in the same direction occurs. An example of this could be a complex that

simultaneously transfers one Cl� and one K+ ion through the membrane in the same

direction. In the same way, transport of an ion could be coupled to an uncharged

molecule, like glucose. An antiport, in contrast to this, is a system simultaneously

transporting two ions with identical charges in opposite directions, for example one

K+, against one H+.

Co-transport systems are electroneutral, if an equal number of charges is

transported, either of opposite sign in the case of a symport, or of the same sign in

antiports. In this case the flux does not depend directly on electric field conditions. It

is electrically silent, i.e., it cannot be identified by electrophysiological methods. In

cases of unequal charge transporters, an electrical current will be the result of the

transport. We will call this type of process rheogenic, i.e., “current producing.”
Rheogenic co-transport processes can be recognized by their electrical conductivity,

a property which they have in common with simple diffusion processes. They can be

controlled by electric fields, especially by the transmembrane potential.

An active transport is a sort of pump, transporting ions or even uncharged

molecules against their own chemical or electrochemical gradients. Therefore, it

is an “uphill transport,” using metabolic energy (DG, in Fig. 3.25). In most cases

these are so-called transport ATPases, using the energy of the hydrolytic reaction:

ATP ) ADP. Furthermore, ionic pumps are known which are driven by other

Fig. 3.25 Classification of various systems of ion transporters in biological membranes, including

particular examples
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sources of energy, such as for example decarboxylation, oxyreduction, or even the

quantum energy of light. Some of these mechanisms can also run in the opposite

direction. In chloroplasts and mitochondria, for example, ATP is synthesized by a

“downhill” proton flux (see Sect. 4.8.3, Fig. 4.36).

Active transport can also be rheogenic. In this case the transport directly induces

electric currents, like for example the Na-K-ATPase, transporting three charges

from the inside out, but only two in the opposite direction, or a Ca++-ATPase (see

Sect. 3.5.2, Fig. 3.35). Frequently such transports are also called electrogenicwhich
means: “generating an electrical membrane potential.” Looking at the terms

“rheogenic” and “electrogenic” accurately, they are however not identical. Even

an electro-neutral pump can be “electrogenic” if it produces a concentration

gradient of ions which subsequently generates a diffusion potential. Conversely, a

rheogenic pump may influence the transmembrane potential only if there is a

sufficiently high membrane resistance.

This leads to the differentiation between primary and secondary active

transporters. An example of a primary active transporter is the Na-K-ATPase,

where the uphill flux of ions is directly driven by a biochemical process. In contrast,

secondary active transporters exploit the energy already stored in the electrochemi-

cal gradient of one species to drive the uphill transport of another substrate. This

can be realized by various kinds of symporters or antiporters. As an example in

Figs. 3.25 and 3.26 the co-transport of Na+ with glucose is shown. It is “secondary

active,” because in fact the uphill glucose uptake is driven by the downhill Na+-flux

in a gradient, produced by the Na-K-ATPase. In a similar way fluxes of amino acids

are coupled with transport of Na+ or H+ ions.

The number of different transport paths in a single membrane can be rather high.

In Fig. 3.26 this is illustrated for the case of cells of a renal proximal tubule. It is

Fig. 3.26 Various types of

ion transporters in cells of

a renal proximal tubule and

in the paracellular space

(After Verkman and Alpern

1987)
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obvious that the fluxes are coupled with each other by the transmembrane potential

as well as by the concentrations of their common ions. Additionally, changes of fixed

charges inside the cell induced by internal pH changes need to be taken into account.

The existence of transporters where the participants have strongly fixed stoichi-

ometry forces us to rethink the requirement of flux electroneutrality which we

postulated in Sect. 3.3.3 (Eq. 3.170). Considering rheogenic symports, it is not

the electroneutrality of a single flux that is required, but rather the electroneutrality

of all fluxes in the membrane of a single cell together. The calculation of the

balance of charges and ions in a cell is therefore only possible by considering all

fluxes. This type of coupling can formally be calculated using the flux matrix as

discussed in Sect. 3.1.3.

The existence of co-transporters in a cell rather than simple diffusion processes

can be regarded as a form of optimization. Ionic transport, based on electrodiffusion,

strongly depends on the transmembrane potential. An alteration of the transmem-

brane potential would cause an immediate change of electrolyte fluxes in the whole

cell, and subsequently a shift in the internal concentration of all ions. In contrast, the

system of electroneutral co-transporters is independent of the transmembrane poten-

tial and will protect the cell against such disturbances.

Further Reading

L€auger 1991; Luckey 2008.

3.4.2 The Network of Cellular Transporters

If a cell were only a poly-electrolyte system without metabolically driven ion

pumps it would remain in a state of Donnan equilibrium. This means that there

would be a Donnan distribution of all mobile ions according to fixed charges, and as

a result, a Donnan osmotic pressure (see Sects. 3.2.4, 3.2.5). In the living cell

however, active transport systems driven by metabolic energy (Fig. 3.25) modify

this ionic composition, as shown schematically in the model of Fig. 3.4b. The living

cell therefore reaches a steady state, i.e., a stationary state of nonequilibrium in

general (see Fig. 3.6), and for particular ionic species.

This nonequilibrium state has manifold functions. In general the cell can be

regarded as a kind of electrochemical energy store which may be easily tapped.

This, for example, is the case in electrical membrane de- and repolarizations (see

Sect. 3.4.4). Furthermore, the nonequilibrium state of a system is the precondition

for its homeostatic regulation. This, by the way, is also the reason for the increased

temperature in homeothermic animals. The setting up of a concentration gradient of

ions across the membrane makes the cells able to control and regulate an intracel-

lular environment, which is the precondition of various cellular processes. In the

case of Ca-ATPase an effective signal system is established. This pump creates an

extremely low calcium level in the cytoplasm which is of the order of 104 times

lower than the concentration in the extracellular fluid. In this way an important
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signal transduction pathway is established, which can be triggered even by a

minimal increase in the Ca-permeability of the membrane. The cytoplasmic

Ca++-ions act as a second messenger, in a number of cellular functions.

What therefore are the immediate effects of ionic pumps on the cell?

– They control and regulate the internal ionic milieu. In this way, steep gradients

of the electrochemical potentials of particular ions are built up, essentially

without changing the total internal ionic concentration. The internal potassium

concentration of animal cells, for example, is usually much higher than the

external one. Simultaneously however, the sodium concentration is lower to

the same degree. The sum of both of these ions in the cytoplasm, taken together,

is nearly the same as in the external medium.

– In the case of rheogenic pumps, they directly induce transmembrane potentials.

In this case the pumps are called electrogenic.

– They can produce a direct osmotic effect changing the concentration of osmoti-

cally active substances.

– They can establish particular internal ionic conditions, controlling, for example,

the extremely low intracellular calcium concentration.

Some direct consequences of the active transport processes can be demonstrated

by the effects of stopping the pump through the use of specific inhibitors. In this

case effects can be observed like Donnan-osmotic swelling, internal pH shifts, an

increase in the internal calcium concentration, a change of transmembrane poten-

tial, etc. Mostly, using such inhibitors, the overall internal ionic conditions are

altered.

As an example, the system of transport processes in kidney tubule cells is

illustrated in Fig. 3.24. There are 13 different transport systems shown which

determine the cellular milieu and additionally five other fluxes between the luminal

and serosal surfaces of the epithelium across the paracellular gap. This picture in

fact is incomplete as, for example, Ca++ fluxes are not shown, and the diagram does

not include the intracellular organelles with their own transporters.

Using this example we will illustrate the interconnections of these transport

properties qualitatively, following for example one particular path: Transport

ATPases pump protons out of the cell, others decrease the internal sodium content,

and in the same way enrich the cytoplasm with potassium. Extruding positive

charges, both primary active transporters induce an inside negative transmembrane

potential. Simultaneously, an electrochemical sodium gradient was generated

which drives a sodium flux outside–in. This influx, however, is realized by a

glucose-sodium co-transporter and acts therefore as a secondary active transporter

for glucose entry. The glucose finally diffuses via its own concentration gradient on

the opposite side of the cell layer from the cytoplasm into the capillary.

All these manifold transporters occurring in a single cell respond to different

stimulants. Some of them become active only if a particular pH exists, others if the

internal calcium concentration was increased. There are voltage-sensitive

transporters responding to particular transmembrane potentials, or others that

respond to mechanical stress of the membrane or to minimal temperature changes
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(see Sect. 4.1). The electroneutral Na+H+ antiporter, which is present in most

animal cells, merits particular attention. Under physiological conditions, at neutral

pHi it is inactive. However, if the internal pH increases, it becomes activated. This

property qualifies it to be a volume-regulating system. This mechanism was

demonstrated in the case of lymphocytes. It has also been shown that this Na+ H+

antiporter can be activated by a multitude of substances including hormones,

growth factors, lectins, etc. These substances alter the above-mentioned pH thresh-

old. This seems to be an important control mechanism for the regulation of complex

biological phenomena.

Beside direct calculations of flux coupling, the equations of nonequilibrium

thermodynamics can be applied to describe the energy balance of primary and

secondary active transport. As an example the energy balance at steady state of the

above-mentioned Na+-Glucose symport will be evaluated. This is an example of a

steady-state system like that of Fig. 3.4b which is determined by the active transport

(JA) as well as by the passive flux (Ji). In Sect. 3.1.4 we introduced the dissipation

functionF ¼ sT (Eq. 3.64), which must be larger than 0. According to Eq. 3.64 for

our system it amounts to

F ¼ JAXA þ JiXi for: F>0 (3.180)

In our particular case the glucose uptake (JG) is driven by the passive influx of

sodium (JNa), driven by its electrochemical gradient. Corresponding to Eq. 3.180

this results in:

JGXG þ JNaXNa>0 (3.181)

If v equivalents of sodium ions are transported for each mole of glucose then:

JG ¼ nJNa (3.182)

Introducing this in Eq. 3.181 and considering that both fluxes are not equal to

zero, it follows that:

nXG þ XNa>0 (3.183)

respectively:

XNa>� nXG (3.184)

Let us now replace the forces (X) by the differences of the corresponding

chemical, resp. electrochemical potential (see Sect. 3.3.1), we obtain:

� nDmG<D~mNa (3.185)

Using Eqs. 3.33 and 3.41, and the conditions: DT ¼ 0 and Dp ¼ 0, we get:
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nRT ln
aiG
aeG

<� RT ln
aiNa
aeNa

þ FDc
� �

(3.186)

(where Dc ¼ ci � ce) and after rearrangement:

aiG
aeG

� �n
<
aeNa
aiNa

e�
FDc
RT (3.187)

This equation allows us to calculate the maximal rate of enrichment of glucose in

the cell that can be achieved for a given electrochemical gradient of sodium ions.

Assuming that the membrane potential of the cell is: Dc ¼ �50 mV, and the

relation of sodium ions: aNa
i/aNa

e ¼ 10 (T ¼ 300 K), it follows:

aiG
aeG

� �n
<69 (3.188)

If the fluxes are coupled 1:1 (v ¼ 1), this process gives a maximum enrichment

of glucose by a factor of 69, when the pump is performing optimally.

Similar calculations can be applied to primary active transports, i.e., those that

are driven by chemical reactions, for example transport ATPases. In this case in the

equation of the dissipation function (Eq. 3.180), the reaction rate (as a type of scalar

flux), and the chemical affinity of the energy supplying reaction (Eq. 3.75) must be

included.

The calculation of the intensity of a pump which is necessary to build up a

certain concentration gradient depends both on the coupling stoichiometry of the

fluxes and on the passive back flow. This means that not only the power of the pump

is responsible for the steady-state level achieved, but also the conductivity, resp. the

permeability of the considered substance, leading it to flow backwards. This is

illustrated in the scheme shown in Fig. 3.4b: the power of the pump must be higher

if a greater difference in the levels of the vessels is reached, and if the outflow

becomes faster.

Further Reading

Luckey 2008.

3.4.3 The Membrane Potential

As outlined in the previous section, the pumps lead to gradients of ion

concentrations and therefore accumulate electrochemical energy. Now we will

discuss how the cell generates an electrical membrane potential, using this

accumulated energy.
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First it is necessary to remember the general definition of electrical potential as

defined in Sect. 2.2.1. According to this, the electrical potential [c(x,y,z)] is a scalar
state parameter in three-dimensional space, similar to temperature (T) or pressure (p).
Mostly as a simplification the function c(x) is used to characterize the potential

along a line that runs perpendicularly through the membrane (Figs. 2.15, 2.48). As

the transmembrane potential (Dc) the potential difference is defined between two

points, one on the inside, the other on the outside of the membrane, each at a suitable

distance from it (Fig. 2.48). The sign of this difference results from its definition:

Dc ¼ ci � ce (3.189)

Note that terms such as Donnan potential, diffusion potential, Nernst potential,

are just expressions describing the mechanisms which can give rise to the electrical
transmembrane potential and do not refer in any way to different kinds of

electrical potentials that might exist simultaneously. In fact there is only one

electrical potential c(x,y,z, t) at a given point in the space (x, y, z), and at a given

time (t). In Fig. 2.48, the function c(x) illustrates this in a very simplified way. It

includes the transmembrane potential and the two surface potentials at both

boundaries.

We have already learned that processes of active transport can be rheogenic

(Fig. 3.25). If the so-far transported charges can be rapidly neutralized by other

fluxes, for example by Cl� exchange in the membrane of human erythrocytes, then

a rheogenic pump has no direct electrical consequences for the cell. If however, no

such short-circuit flux exists, the transported net charges build up a transmembrane

potential, and the rheogenic pump becomes electrogenic.
In any case, the Na-K-ATPase, occurring in nearly all cell membranes, generates

an electrochemical gradient of sodium and potassium. For most animal cells a

relation near 1:10 occurs for aiK>aeK and aiNa<aeNa. Chloride ions are distributed

mostly passively, according to the Nernst equation. This nonequilibrium distribu-

tion of the cations can lead to a diffusion potential which can be calculated by the

Goldman equation (Eq. 3.179) as follows:

Dc ¼ RT

F
ln
PCla

i
Cl þ PKa

e
K þ PNaa

e
Na

PCla
e
Cl þ PKa

i
K þ PNaa

i
Na

(3.190)

Even if the internal ion activities aiK and aiNa remain constant, the diffusion

potential (Dc) can vary widely because of changing permeabilities (Pi). The limits

of such variations can be easily obtained from Eq. 3.190:

For PK >> PNa, PCl Eq. 3.190 reduces to:

DcK ¼ RT

F
ln
aeK
aiK

(3.191)

and for PNa >> PK, PCl it follows:
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DcNa ¼
RT

F
ln
aeNa
aiNa

(3.192)

For these particular cases the Goldman equation (Eq. 3.190), therefore, reduces

to a Nernst equation (Eq. 3.112) which was derived for such kinds of semiperme-

able membranes. If the typical relations of activities for sodium and potassium, as

mentioned before, are inserted into Eqs. 3.191 and 3.192, then it is easy to

understand that DcK < 0 and DcNa > 0.

This situation is illustrated in Fig. 3.27. The electrochemical gradients of

potassium and sodium which are generated using metabolic energy can be consid-

ered as storage batteries, or electrical accumulators having opposite polarities.

The permeability characteristics of the ions are expressed in this model as

conductivities of the variable resistors, or potentiometers through which these

accumulators are discharged. If the resistance is low, then a large discharge current

would flow, and if the accumulator is not recharged continuously, it would soon be

empty. In fact, the permeabilities PNa and PK are usually so low that the electro-

chemical gradient of the living cell persists for hours or even days. The effective

membrane potential in this model is represented by the voltage difference across the

capacitor DcM. This capacitor represents the capacity of the membrane (see Sect.

2.3.6). If PNa and PK have about the same value, then DcM will be very small. If

they differ, a membrane potential will be established according to Eqs. 3.191 and

3.192.

Figure 3.27 demonstrates membrane potentials that can be induced in human

erythrocytes. In this case the Nernst potentials for potassium and sodium give the

limits of these possible shifts. They range approximately between �95 mV and

Fig. 3.27 An electrical circuit as a model illustrating the Na+-K+ diffusion potential of a cell as

the result of a sodium (DcNa), and a potassium (DcK) battery. In the lower part of the figure,

possible potential alterations are illustrated for the case of human erythrocytes in a solution

containing 145 mMNaCl and 5 mMKCL.K – DcK,V – valinomycin-induced diffusion potential,

M – potential of untreated erythrocytes corresponding to DcM, D – position of the Donnan

potential, Na – DcNa
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+65 mV. The actual membrane potential of human erythrocytes in vivo is found to

be �9 mV (M), and is only a little greater than the Donnan potential (D) which

would result if the cell achieved a thermodynamic equilibrium (see Fig. 3.19). If the

cells are treated with valinomycin, the membrane potential falls to about �35 mV

(V). Valinomycin is an ionophore that is rapidly incorporated into the membrane

causing a highly selective increase of potassium permeability. It will not reach the

limiting value of the Nernst potential of potassium, because the values of PCl and

PNa are not negligible, as was assumed for Eq. 3.191. However, it is shifted in this

direction.

Even if these types of potential alterations are possible without a significant

change of concentration profiles, they must in fact be accompanied by a certain

transmembrane shift of charges. It is easy to show that this charge flux is extremely

small. For this we calculate the charge transfer across the membrane capacitor,

which is required to adjust these potential differences (DcM in Fig. 3.27). Let us ask

the question: how many charges must be displaced in the cell membrane with a

specific capacity of 10�2 F m�2 (see Sect. 2.3.6) in order to generate a transmem-

brane potential DcM ¼ 0.1 V?

Equation 2.90 gives the corresponding relation for a capacitor. This enables us to

calculate the surface charge density (s) as a function of the transmembrane poten-

tial (Dc) and specific capacity (Csp):

s ¼ CspDc ¼ 10�3C m�2 (3.193)

This value can be converted into charge equivalents of ions, using the Faraday

constant (F):

s
F
¼ 10�3

9:65 � 104 � 10�8 charge equivalents �m�2

The resulting charge density, so far, is very small. Considering a certain geome-

try of the cell, for example a sphere, or in the case of a neuron, a cylinder, one can

easily transform this number into a concentration shift. The result will be a fully

negligible proportion of the amount of internal ions.

This example demonstrates a most important element in the functional arrange-

ment of the living cell: An ion pump driven by metabolic energy, accumulates

electrochemical energy by generating a concentration gradient of sodium and

potassium. This electrochemical energy can be converted into electrical energy

altering the membrane permeabilities (for example: PK and PNa). In this way a

wide-ranging control of the electric field in the cell membrane is possible. Even if

the shift of the membrane potential amounts to only some tenths of a millivolt, the

resulting variations of the field strength, sensed by the membrane proteins, are of

the order of millions of volts per meter (see Sect. 2.2.1)! It must be emphasized that

this control is possible without any sizeable input of energy and can be realized in

milliseconds. Such permeability changes can be induced by the cell itself as well as

by external influences.
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As mentioned before, there are many ion-selective transporters in the cell which

are controlled by internal calcium concentration, by internal pH, by mechanical

tension of the membrane, or by modifications of other parameters. Diffusion

potentials may also result from an interaction between the cell and specific drugs,

or may be triggered locally through mechanical contacts with surfaces or particles,

such as for example viruses. These alterations of membrane potentials caused by

local permeability changes can induce electric potential differences and therefore

electric fields not only in the x-direction, perpendicular to the membrane surface,

but also in the y-, z-direction, i.e., in the plane of the membrane (see Sect. 3.5.2).

In the next section we will consider the action potential of nerve cells as a

classical example of the feedback loop between an electric field and ionic perme-

ability in more detail. Recently, the interest in the transmembrane potential of the

cell as a regulator of cellular events has greatly increased. This concerns the size of

the membrane potential in various cells, as well as its time dependence. Although

action potentials have a special significance in signal transfer of neurons, they occur

also in many other cells.

Although opening to particular transporters or integration of specific channels in

the membrane may always modify the membrane potential by generating diffusion

potentials, the resting potential of many cells is exclusively generated by electro-

genic pumps. In this case transmembrane potentials appear to be independent of

external potassium concentrations. Inhibition of the pumps in this case immediately

leads to changes of Dc (see Bashford and Pasternak 1986).

In Fig. 3.28 correlations of membrane potential and the state of various animal

cells are illustrated. In contrast to cells with active proliferation like cancer cells or

cells of embryos, indicating a transmembrane potential between �10 and �30 mV,

nondividing cells, like neurons or skeletal muscle cells show membrane potentials

between�70 and 90 mV. The transmembrane potential of cells which pass through

a state of proliferation falls before mitosis takes place. It is not yet clear whether this

reflects a regulatory mechanism of the cell, or whether it is only a phenomenon that

accompanies such a mechanism.

In fact, in many cases alterations in the electrical field of a membrane seem to be

of functional importance. The following mechanisms may cause this:

– The transverse component of an electrical field in the membrane may affect the

functional state of intrinsic molecules. Dipole orientations for example, may

modify the function of transport or other functional proteins, phase transitions in

the lipid components of the membrane can be influenced by the field, or a

transversal shift of small charged molecules can occur.

– The lateral component of the field can cause a displacement in its mosaic

structure. This could lead to a local change in the mechanical properties of the

membrane causing vesiculation, spike formation, etc.

– The electrical field can influence local ionic concentrations, as well as local pH

values in close proximity to the membrane which, in turn, could affect transport

processes, biochemical reactions at the membrane surface as well as receptor

properties.
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Further Reading

Glaser 1996; Starke-Peterkovic et al. 2005; Wang et al. 2003.

3.4.4 The Action Potential

In the previous section we described the possibility of cells to use the electrochemical

gradient of potassium and sodium ions which is built up by active transport, to trigger

various amounts of membrane potential simply by changing their permeabilities. This

mechanism is expressed most efficiently in nerve and muscle cells. This was the

reason why excitation phenomena were detected first in these cells.

Particular progress was achieved following the rediscovery of the giant axon of

the squid in 1937 by John Zachary Young, and its subsequent introduction for

biophysical measurements by Kenneth Stewart Cole. The use of these giant axons

Fig. 3.28 The transmembrane potential of normal animal cells (right) and transformed tumor

cells (left). It can be seen that proliferating cells indicate a membrane potential which is above the

threshold value of�37 mV. Cells transiently arriving at the proliferating state lower their absolute

potential. The human erythrocyte, as a non-nucleated cell with special physiological functions

appears to be an exception (Drawn according to values from Bingeli and Weinstein 1986)
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with a diameter up to 1 mm, have made it possible to apply the voltage-clamp

technique to determine the ionic currents during the nerve impulse in extensive

experiments by Alan Lloyd Hodgkin and Sir Andrew Fielding Huxley. In this

technique, the electrical conductivity of the membrane is determined at various

fixed transmembrane potentials, generated by microelectrodes. Recently, using

patch-clamp techniques it has been possible to investigate the kinetics of these

permeability alterations in extremely small membrane areas.

The action potentials of various nerve and muscle cells as illustrated in Fig. 3.29,

can be qualitatively explained using the electrical scheme of Fig. 3.27 which was

discussed in the previous section. The nonexcited nerve shows a very low sodium

permeability (PNa), its resting potential therefore, was determined chiefly by the

diffusion potential of potassium which is negative inside-out. After excitation the

membrane permeability for ions increased abruptly, whereas the sodium perme-

ability rose quicker than that of potassium. For a short time therefore, the diffusion

potential of sodium becomes dominant. This has the opposite polarity to the

potassium potential which explains the spike of the action potentials.

As we demonstrated in the previous section the amount of charges that are

needed for this kind of depolarization is extremely low. This was checked by flux

measurements in excited nerves. During the generation of an action potential,

therefore, no significant alterations of the internal ion concentration occur.

Fig. 3.29 Examples of various action potentials (After Penzlin 1991)
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A nerve can generate action potentials for a long time after the ion pumps have been

blocked. Only after hours does the electrochemical battery of the cell become

empty.

Beside the entire mechanism of membrane excitation, the translation of the

action potential along the axon of a nerve cell is of particular interest. In unmyelin-

ated axons the process of pulse transmission is based on a lateral spreading of

excitability by the electric field, generated by the excitation itself (see Fig. 3.37).

The action potential generated by excited proteins in the membrane triggers the

behavior of neighboring proteins. The impulse can proceed only in one direction,

because of the refractory period of several milliseconds which the proteins need

after an excitation to become excitable again.

Figure 3.30 illustrates the advantage of this kind of impulse propagation in

relation to the transmission of a voltage pulse in an electric cable. In contrast to

the cable, the time characteristics of the nerve pulse remains more or less

constant, even after a certain distance of transmission. Conversely of course, the

absolute velocity of pulse transmission in a cable is much faster than in an axon of

a nerve.

The advantage of simple electrical conductivity is used in many vertebrate, and

in a few invertebrate axons. In this case the axons are surrounded by Schwann cells
forming the myelin sheath as an electrically isolating layer. Such nerves are called

myelinated. This sheath is interrupted at intervals of some millimeters by so-called

nodes of Ranvier, i.e., unmyelinated regions. In the myelinated regions simple

electric conductivity of the pulse occurs, as in a cable. The nodes of Ranvier

represent membrane areas which are excitable in a normal way. If a certain node

of Ranvier is excited, then the pulse propagates by simple electric conduction along

the myelinated length and excites the subsequent node. This so-called saltatory
conduction is a form of pulse amplification leading to a faster transport of informa-

tion. In contrast to about 1 m/s in unmyelinated nerves, the pulse propagation in fast

myelinated nerves is up to 100 m/s.

In 1952 Hodgkin and Huxley, based on intensive experimental investigations on

squid axons, proposed a theoretical model of membrane excitation in nerves (Nobel

Prize 1963). Its form is of a purely kinetic nature and does not contain information

about concrete molecular mechanisms taking place in the membrane.

Fig. 3.30 The time course of

a voltage pulse which is set at

time t ¼ 0 at point x ¼ 0,

transmitted in an isolated

cable (blue lines) and in an

unmyelinated nerve (red
lines)
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The basic equation describes the kinetics of the current in an electrical circuit,

similar to the scheme in Fig. 3.27. The current density (j) in such a system can be

described by the following equation:

j ¼ C0 dðDcMÞ
dt

þ ðDcM � DcKÞG0
K þ ðDcM � DcNaÞG0

Na (3.194)

DcM is the electrical membrane potential, whereas the symbols DcK and DcNa

indicate the Nernst potentials of potassium and sodium according to Eqs. 3.191 and

3.192. C0 is the capacity of the membrane, and GK
0 and GNa

0 the potassium and

sodium conductivities, always corresponding to a unit of area in the membrane. The

conductivity of the membrane for individual ions cannot be measured electrically

but can be obtained from experiments in which the kinetics of radioactive tracer

ions is measured.

The first term of Eq. 3.194 gives the current density which leads to the charge of

the membrane capacitor (Fig. 3.27). The following terms represent the current

densities associated with potassium and sodium fluxes.

The conductivities GK
0 and GNa

0 are not constant, but functions of the electric

field in the membrane, resp. of the membrane potential. The potentiometers in

Fig. 3.27, therefore, are controlled directly by DcM. From the molecular point of

view this means that these conductivities are the result of voltage-dependent

channels. It is therefore necessary to make statements about field dependents of

these conductivities, i.e., the functions GK
0(DcM) and GNa

0(DcM).
To describe the behavior of these channels, Hodgkin and Huxley used a statisti-

cal approach. They assumed that the channels can obtain only two discrete states:

“open,” or “closed.” The phenomenological conductivities (GK
0, GNa

0) then repre-

sent the average of the functional states of a large number of such channels. If all of

the channels are open then the maximal conductivities G0
K max and G0

Na max are

established.

Furthermore, it is assumed that the potassium channel will be open when exactly

four events take place simultaneously, all having the same probability of occur-

rence (n). The real nature of these events is not explained. It could be, for example,

the presence of four potassium ions near the entrance of the channel.

This assumption leads to the following equation:

G0
K ¼ GK maxn

4 (3.195)

The probability n is a function of time and can be characterized by rate constants

an and bn as follows:

dn

dt
¼ anð1� nÞ � bnn (3.196)

Concerning the sodium permeability, it is assumed that the channel will be open

when three events, each having the probability m occur simultaneously, and if
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another inhibitory event having the probability h has not taken place. This leads to

the expression

G0
Na ¼ GNa maxm

3h (3.197)

For the parameters m and h also kinetic equations can be written:

dm

dt
¼ amð1� mÞ � bmm (3.198)

dh

dt
¼ ahð1� hÞ � bhh (3.199)

The voltage dependence of the channels is proposed to be the result of influences

on the rate constants a and b:

an ¼ 0;01ðDcþ10Þ

e
Dcþ10

10 �1

bn ¼ 0; 125 e
Dc
80

am ¼ 0;1ðDcþ25Þ

e
Dcþ25

10 �1

bm ¼ 4 e
Dc
18

ah ¼ 0; 7e
Dc
20 bh ¼ 1

e
Dcþ30

10 þ1

(3.200)

(In these equations, the potentials are in mV!)

These equations were obtained from a purely empirical approach, analyzing

measured parameters.

It is easy to see that if the relations given in Eq. 3.200 are substituted into

Eqs. 3.196, 3.198, and 3.199, a system of nonlinear differential equations will be

obtained. The solution of these equations can be substituted into Eqs. 3.195 and

3.197, and eventually, into the basic Eq. 3.194. An analytical solution of this system

of differential equations is not possible. Computer simulations of these equations,

however, indicate a good accordance with experimental results.

Figure 3.31 shows the calculated time courses for the changes in sodium and

potassium conductivities at different membrane potentials. This also corresponds

well with experimental findings. These curves illustrate the mechanism described

above for the generation of an action potential. The conductivities from Fig. 3.31

illustrate the time-dependent changes of the potentiometers shown in Fig. 3.27,

whereas the conductivities are directly proportional to the permeabilities. Within

the first millisecond following the stimulus, the sodium potential is dominant

because of the rapid increase in GNa
0 (and thus PNa). This will then be counteracted,

by the increasing potassium potential.
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The Hodgkin–Huxley model and the corresponding measurements have

provided a benchmark in our understanding of cellular excitability. New experi-

mental techniques leading to more precise data nevertheless require some revisions

of these approaches. So for example the mechanisms for the voltage-gated potas-

sium and sodium ion currents have been superseded by more recent formulations

that more accurately describe voltage-clamp measurements of these components.

Especially its current–voltage relation has a nonlinear dependence upon driving

force, corresponding to the Goldman–Hodgkin–Katz relation, rather than the linear

approach used by Hodgkin and Huxley.

The original formulations of G0
Na and G0

K by Hodgkin and Huxley nevertheless

continue to be used even though they do not adequately fit voltage-clamp

measurements. The deviations between the m3h and n4 models (Eqs. 3.195 and

3.197), and the corresponding sodium and potassium currents do not appear to be

eminently significant. Models that do describe these circumstances more precisely

are more complex, which limits their practical utility in computational neuroscience.

Further Reading

Clay 2005; Hodgkin and Huxley 1952; Huxley 2002.

3.4.5 Molecular Aspects of Membrane Transport

In Sect. 3.4.1 various types of membrane transporters were characterized only in a

phenomenological way. Now we will direct our attention to their structure and

function. In fact, charged hydrophilic ions and molecules can penetrate the lipid

membrane of cells and organelles only with the help of these mediators, usually

proteins, the polypeptide chains of which span the lipid bilayer several times. In the

last decades the molecular structure of a large number of these proteins has been

revealed thanks to X-ray crystallography. In this way, the former more or less

Fig. 3.31 The time dependence of the conductivities GK
0 and GNa

0 for various membrane

potentials, corresponding to the theory of Hodgkin and Huxley

3.4 Membrane Transport and Membrane Potential 181



mechanistic models of transport processes were replaced by more realistic molecu-

lar mechanisms.

In general, the following properties of transporters require an answer from these

molecular considerations:

– Their extremely high selectivity including the phenomena of dehydration and

rehydration of hydrophilic species in the process of membrane permeation.

– The mechanism of coupling between transport and the energy supporting bio-

chemical reactions.

– The mechanisms of transport regulation by ligands and the transmembrane

potential.

In 1998 MacKinnon unlocked the three-dimensional molecular structure of a

potassium channel, a success which was awarded with the Nobel Prize in 2003.

Such K+ channels are found in bacterial as well as in eukaryotic cells of plants and

animals, which are related members of a single protein family. Their amino acid

sequences are easy to recognize because they contain a highly conserved segment

called the K+ channel signature sequence.

Let us answer some of the questions noted above using this extensively

investigated example. The pore of this transporter is comprised of four identical

subunits that encircle the central ion conduction pathway (two of them are depicted

in Fig. 3.32). Each subunit contains two fully transmembrane a-helices, and a tilted
pore helix that runs half way through the membrane. The hydrated K+ ion, entering

this channel from the cytoplasmatic side, first remains in the hydration state in a

water-filled cavity with a diameter of 1 nm near the midpoint of the membrane.

This cavity helps the K+-ion to overcome the electrostatic repulsion that it would

Fig. 3.32 The molecular structure of the KcsA channel. Only two subunits of this tetrameric

molecule are shown. According to the position of the intracellular ends of the inner helices forming

the gate, it is shown in a closed state (From MacKinnon 2003, modified)
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normally experience when moving from the cytoplasmatic water phase into the

low dielectric membrane environment. By allowing it to remain hydrated at the

membrane center, and by directing the C-terminal negative ends of the protein

helices toward the ion pathway, it becomes stabilized at the membrane interior.

After this it enters the selectivity filter which contains four evenly spaced layers of

carbonyl oxygen atoms, and a single layer of threonine hydroxyl oxygen atoms,

which create four K+ binding sites. In fact, on average only two K+ ions are present

at a given time in these four positions, always separated by one water molecule. It

is very important that the arrangement of these protein oxygen atoms is very

similar to that of water molecules around the hydrated K+ ion. In this way the

energetic cost of dehydration is minimized. Furthermore, a part of the binding

energy is used for conformational changes of the proteins, which also is a prereq-

uisite for the high conduction. In fact, the flux achieves up to 108 ions per second.

This rate is large enough for sensitive amplifiers to record the electric current of a

single channel. Na+ ions cannot enter this filter because of their different crystal

structure.

The gate of the channel is represented by a helix bundle near the intracellular

membrane surface. In the closed position, as depicted in Fig. 3.32, the pore

narrows to about 0.35 nm and is lined with hydrophobic amino acids, creating an

effective barrier to the hydrophilic ions. This structure seems to be representative

for many different potassium channels, irrespective of the stimulus that causes the

pore to be in closed or open state. The conformational changes of these polypep-

tide chains that open and close the channel gate occur on the order of 102 times per

second.

As discussed in previous chapters the membrane potential, and consequently the

membrane electric field and its modification forms not only the basic principle of

nerve and muscle excitation but regulates various functions in nearly all cells. This

requires proteins, especially transporters, embedded in the membrane that sense

alterations of this field and transform them into various cellular signals.

It is easy to imagine how an electric charge or an electric dipole can be

reorientated within a protein when the field is changed. This can produce a

conformational change in the protein that may regulate its function. The move-

ment of the charge or the dipole induces a transient current (gating current) that
can be measured experimentally and provides direct information about such

conformational changes. The extent of the charge movement depends on the

magnitude of the charge and the strength of the electric field in the region

where the charge moves. In Sect. 2.2.1 (Fig. 2.15) as a crude estimation, this

field strength was indicated to be of the order of 107 V m�1. In fact, the exact

value of this parameter near the corresponding charges or dipoles is unknown. In

some cases the field can be concentrated to a narrow region around this location.

Furthermore, the dielectric constant of this region inside the molecular structure is

unknown.

The most extensively investigated voltage-gated channel is the so-called Shaker

K+ channel which can be expressed at a high density in Xenopus oocytes. It was
isolated fromDrosophila melanogaster and was named after the shaking that the fly
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undergoes under anesthesia in its absence. Measurement of the gating current by

patch-clamp techniques indicates that 13 electron equivalent charges per molecule

are moving in this case. On the basis of the crystal structure of this protein, the so-

called paddle model was proposed. It is assumed that voltage-gating charges are

located on a hydrophobic helix-turn-helix structure, the so-called S4-segment,

which can move within the membrane near the protein–lipid interface according

to the direction of the electric field. Recently an S4-type sensor has been found in a

voltage-dependent phosphatase, suggesting that this type of sensor may be modular

and might have been incorporated into other types of proteins.

The kinetic model of nerve excitation as discussed in the previous section

requires a particular sequence of opening and closing of potassium and sodium

channels controlled by the membrane potential. Probably the four voltage-sensor

domains of these channels react with individual time courses.

Although K+ channels are excellent prototypes for voltage-gated channels, there

are several other types of membrane proteins that differ in function, selectivity,

regulation, kinetics, and voltage dependence. So for example a G-protein coupled

muscarinic receptor has been found, in which a voltage-sensor is an integral part of

the structure. It is expected that many other sensors will be discovered in the near

future. More structures and biophysical analyses are still needed for a full molecular

understanding of the function of these voltage sensors.

In contrast to the relatively simple mechanisms of channels, the pumps, and the

co-transport systems require more functional elements, and the transport

mechanisms demand more conformational changes in the corresponding transport

protein. Especially the energy release by hydrolyzing ATP, and its coupling to ion

movement needs a series of protein conformations. The first atomic-resolution

structure of an ion pump was published in 2000 for the Ca-ATPase by Toyoshima

et al. It shows an integral membrane protein with a large extended cytosolic part. In

spite of the enormous progress of research in this field, a number of questions,

especially concerning the Na-K-ATPase, are still open. The required conforma-

tional changes that accompany these transport processes mean that their speed is

much slower than processes of channel transport.

The progress in determining the molecular structures of these channels has

greatly facilitated the theoretical modeling and numerical simulation of the ion

transport process itself. The most detailed description is based on the concept of

molecular dynamics (MD). In this case microscopic forces of interactions

between the penetrating ion and all atoms of the channel are calculated based

on the classical Newton’s equation of motion. This leads to trajectories of all the

atoms in the system. In recent years, this approach has been used to simulate an

increasing number of channels. Although this is the most detailed and accurate

approach, it is limited by its shortcomings in quantitatively characterizing a large

system, and its application depends considerably on advanced computational

techniques.

Simpler and computationally less expensive of course are continuum models

based on macroscopic or semimicroscopic continuum calculations like the

Poisson–Nernst–Planck (PNP) approach. They, however, include a number of
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limitations that have already been discussed in Sect. 3.3.2. A more realistic

approach, situated between MD- and PNP-models, is based on Brownian dynamics
(BD). In this case the trajectories of the ions in the system are followed using the

Langevin equation. This is an approach, based on the theory of Brownian move-

ment that considers the force not as the result of interactions of all atoms in the

system, but rather of a subset of relevant coordinates. BD simulations have been

applied to a variety of ion channels in recent years and the agreement with

experimental work has been quite encouraging.

Further Reading

Bezanilla 2008; Faller 2008; Gadsby 2009; Kuyucak and Bastug 2003; Luckey

2008; MacKinnon 2003; Toyoshima et al. 2000; Zhou and Uesaka 2009.

3.5 Electric Fields in Cells and Organisms

3.5.1 The Electric Structure of the Living Organism

In Sect. 2.1.3 we pointed out that the term “structure” must be used in a very broad

sense, not limiting it to visible details of a biological system. In fact, structures can

be defined, based on the distribution pattern of various physical properties, such as

concentrations, temperatures, streaming vectors, etc. Using the definition of the

electric potential as a scalar state parameter c(x, y, z, t) (Sect. 2.2.1), an electric
structure can be established too. This, in fact exists on all levels of biological

organization as a hierarchic structure, fully corresponding to the usual classification

in biology, but governed by particular physical approaches (Fig. 3.33).

At the atomic and molecular level, the interactions can be explained using the

approaches of wave mechanics. Particularly, the Schr€odinger equation allows us to

calculate the electric parameters at atomic dimensions, determining the energies of

chemical bonds and molecular interactions.

Considering supramolecular structures like membranes, the electrical structure

is determined by fixed and mobile charges and dipoles, forming electric double

layers, and governing intermolecular interactions. Statistical thermodynamics can

be used to consider these systems, leading to the Poisson–Boltzmann equation

(Eq. 2.53). We already discussed electrical structures at this level of organization

in Sects. 2.3.5 and 2.3.6.

For consideration of the cell as a thermodynamic system, the approaches of

phenomenological thermodynamics were used. The interior and exterior medium of

cells and organelles can be considered as phases with particular properties.

Differences in the electrical potential between these phases, such as transmembrane

potentials, can be described by the Nernst–Planck equation (Eqs. 3.156, 3.157).

Their properties, dynamics, and biological relevance were discussed in Sects. 3.4.3

and 3.4.4. However, we remarked at that point that these properties cannot be
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calculated by phenomenological approaches alone. We mentioned the

Poisson–Nernst–Planck theory (PNP-Theory, Sect. 3.3.2) as necessary for the

completion of this approach.

In the following text we enter a further region of the hierarchic structure. We will

consider electric fields in the extracellular space, in tissues and organs. This already

extends into the area of classical electrodynamics where the Maxwell equations

allow us to calculate electric fields in inhomogeneous dielectrics. The question

arises: how does the field distribute inside the body, which consists of organs with

different conductivities, like bones, soft tissue, air-filled cavities, etc.? We will

Fig. 3.33 The hierarchic system of the electric structure of the living organism and the

corresponding physical approaches
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come back to this question again in Sects. 4.5, 4.6, and 4.7 where the influence of

electromagnetic fields on biological systems is considered.

In spite of these hierarchic structure levels, it should be pointed out again that the

electric potential is a physically defined parameter, independent of its source.

Therefore, there exists only one electrical potential at one moment in time at one
point in space. This statement is important with respect to the circumstances which

will be discussed in the following text, namely the influence of externally applied

electric fields on the intrinsic ones.

3.5.2 Extracellular Electric Fields and Currents

It has long been known that electric fields and currents exist not only across the

membranes of cells and organelles but also in tissue and the whole body. Such

fields are measured as electrocardiograms (ECG), electromyograms (EMG), and

electroencephalograms (EEG) in medical diagnosis for example. EKG and EMG

potential differences are of the order of several millivolts. EEG potentials are much

lower because of the isolating role of the skull. Beside these oscillating potentials, it

is also possible to detect DC potentials between various parts of the animal body

and even in plants. Many measurements of these potentials, however, have suffered

because of inaccurate use of electrodes.

The origin of extracellular electric fields and currents in biological organisms

can be different. They can be generated directly as a result of ion transport in living

cells or indirectly as streaming potentials or even by piezoelectric effects.

Let us first consider the electric conditions in the intercellular space (Fig. 3.34).

As already mentioned (Sect. 2.3.6), there are strong electric fields around the fixed

surface charges, not only perpendicular to the membrane plane, as considered in the

electric double layer theory, but because of the lateral mosaic of surface charges

also in the tangential direction. These fields, however, like the strong electric fields

Fig. 3.34 The intercellular cleft can be considered as a Donnan system, formed by the mostly

negative fixed charges of the surface coats of adjacent cells. This equilibrium, however, may be

deflected by fluxes of positive and negative ions, extruded or taken in by transporters located in the

membrane mosaic. Presently this picture remains speculative as there is no method to measure

these parameters at the moment
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in a double layer, are part of an electrochemical equilibrium, and do not generate

electric currents. This Donnan system, however, is deflected by ion transport

processes through the adjacent cell membranes. As illustrated schematically in

Fig. 3.26, a large variety of rheogenic transporters permanently move ions across

the membrane at various locations. This results in a complicated current pattern

through the system of fixed charges around the cells, and in the intercellular clefts.

Unfortunately, this situation is just speculative because to date no method exists to

analyze this situation experimentally in intercellular clefts, or in the dimensions of

surface coats of cells.

In some cases the distances of the individual electrogenic transporters are large

enough to produce currents which are measurable in their vicinity. One example is a

rheogenic calcium pump which is localized at a particular point in the membrane of

eggs of the fucoid seaweed Pelvetia. This pump induces a current density of up to

0.3 A m�2, and an electric field around the cell. It is possible to measure this field

using the vibrating probe technique (see Fig. 3.35). For this a glass microelectrode

is used, the top of which consists of a metallic sphere with a diameter of a few

micrometers. This electrode vibrates at a frequency of several hundreds of Hz

causing this sphere to be displaced periodically at an amplitude of 10–30 mm.

Using a very sensitive low noise amplifier it is possible to measure voltage

differences near 1 nV ¼ 10�9 V between these two reversal points.

Interestingly, this field seems to play a role in growth regulation of these eggs, and

determines the direction in which the first rhizoid of the cell will grow. Experiments

with external fields confirmed that in fact, the field determines the direction of growth.

Meanwhile, a large number of biological objects have been investigated with

this method, such as single cells, as well as various growing parts of plants, follicles

of insect eggs, growing embryos, muscle fibers, and other tissues and organs.

Investigation of embryos of the clawed frog Xenopus showed particular currents

Fig. 3.35 Current- (——), and equipotential lines (- - - -) near a growing egg of the brown algae

Pelvecia, caused by local rheogenic calcium transport, which determines the location where the

rhizoid is formed. The external field was measured using the vibrating probe method. The

corresponding electrode is shown in two extreme positions during vibration. Relations of electrode

and cell sizes are approximately correct (According to data from Jaffe 1979)
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and fields that change direction and intensity at different stages of development.

Obviously, this reflects a particular control function, the mechanism of which is

unclear. It is possible that in this way the diffusion of charged growth factors is

directed from one group of cells to another. In this case the vector orientation of the

electric field is imposed on the chemical gradient.

A special source of electric currents and fields are the so-called wound
potentials. The reason for them is permanent electrostatic potential differences

between different cavities in the body, caused for example by ion pumps,

differences in electrolyte composition and others. This leads to various

transepithelial potentials. An intact mammalian corneal epithelium for example

maintains a potential difference of about 40 mV. It results from net inward transport

of K+ and Na+, and the net outward transport of Cl� to the tear fluid. In mammalian

skin the inward transport of Na+ leads to a potential difference of about 70 mV

between dermis and the outer layer of the epidermis. The maintained potential

difference is possible due to tight junctions, which are closely associated areas of

the cells forming a barrier with high electrical resistance.

If the isolating properties of an epithelium are disturbed by a wound, the potential

collapses at this point because short circuit currents occur. This leads to an electric

field with a lateral orientation to the plane of the epithelium (see Fig. 3.36). In most

cases the wound has a positive polarity in relation to the surrounding surface. As a

noninvasive method the above-mentioned vibrating electrodes are also used for

mapping the electric field near wounds. For this a small metal vibrating probe

with a displacement of 0.18 mm in air above the skin measures the surface potential

of the epidermis through capacitive coupling. In Sect. 4.4.2 we will indicate how

cells may use this field by way of galvanotaxis to close a wound.

Another source of extracellular currents and fields are various membrane

excitations. The axon of a nerve cell may be the best example. If an action potential

propagates along the axon, small areas of this membrane will become depolarized.

In contrast to the parts of the axon with resting potential, where the external

membrane side is positively charged in relation to the inner one, the polarity of

membrane sides with action potential is opposite. The result is a lateral electrical

current from one point of the membrane to another (Fig. 3.37). Such local

depolarizations not only occur in nerves, but also in muscle and other cells.

In the case of a synchronized excitation of a bundle of nerve or muscle cells, the

currents and fields of the single cells are superimposed, and can be measured as

electrocardiograms (ECG), electromyograms (EMG), and electroencephalograms

(EEG) on the periphery of the body. The use of surface electric potential differences

in medical diagnosis raises the question: how do electric fields, generated for

example by the beating heart, spread in the body? Modern techniques allow a

reasonably good reconstruction of the electric field distribution, using parallel

recordings of the ECG simultaneously in different parts of the body. The measur-

able ECG results from excitation of definite parts of the cardiac muscle in the

rhythm of the beating heart. Consequently, the heart becomes an oscillating dipole,

the orientation of which changes according to the orientation of the actually excited

parts of the muscle.
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Fig. 3.37 Schematic illustration of a snapshot of an excited nerve. The red areas represent the
actual location of the depolarized membrane (see also Fig. 3.29)

Fig. 3.36 Schematic representation of the occurrence of a wound potential in the mammalian

epidermis. The field strength near the wound edge reaches 140 V m�1 and declines strongly with

distance (Data from McCaig et al. 2005)
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The first person to propose a method to evaluate ECGs was the Dutch

physiologist Willem Einthoven, who was awarded the Nobel Prize for his work in

1924. He proposed that it should be possible to localize the excited parts of the heart

by detecting the potentials at three points on the body, which are more or less

equidistant from the heart. This so-called Einthoven triangle is illustrated

schematically in Fig. 3.38. The three cardiograms, derived from the corresponding

points, indicate a periodic sequence of P, Q, R, S, and T waves. These waves

represent the sequence of excitation of different parts of the heart muscle, starting

with the excitation of the atria (P wave). If all the atrial fibers are in the plateau

phase, the PQ segment is reached. Subsequently, the excitation spreads over the

ventricles, beginning on the left side of the ventricular septum, spreading toward the

apex (QRS waves), and finally reaching the ventricular recovery phase (T wave).

As a result of the projection of these curves corresponding to the geometry of an

equilateral triangle, a rotating vector appears, the origin of which lies in the crossing

point of the three axes. The arrowhead moves periodically along the dashed line.

Because of the dielectric heterogeneity of the body, an exact correlation between

the resulting dipole vectors of the field with the anatomical position of various parts

of the heart muscle is impossible.

In a special adaption, electric fishes may use extracellular fields generated

by excitable cells. In the electric organs specialized muscle cells are organized in

so-called electroplaques, where the voltage of several cells adds up to

Fig. 3.38 Construction of a vector cardiogram according to the Einthoven triangle. Using the time

course of the potential curves (blue), orientated in an equilateral triangle, a rotating dipole (red
arrow) can be constructed in the center. P, Q, R, S, T – are the corresponding waves of the ECG.

RA right arm, LA left arm, and LF left foot
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approximately 800 V. Such high voltage is only possible, however, in freshwater

fishes like the electric eels. Marine fishes generate smaller voltages because of the

high conductivity of seawater. In the electric organs of these fishes the cellular

elements are not arranged in series, leading to higher voltages, but rather in parallel

to increase the current. So-called strong electric fishes use the induced electric

fields to catch their prey, or to defend themselves, whilst weak electric fishes use
electric fields only for orientation. Meanwhile, the amazing capacity of this sensory

system has been determined. Although it works only over small distances, which

amounts approximately to half of the body length of the fish, shapes and dielectric

properties of subjects in muddy water are detected in this way (for electroreception,

see Sect. 4.5, Fig. 4.25).

Beside these kinds of currents and fields generated by living cells, other sources

in the body occur as a result of electromechanical transformations, for example by

piezoelectric and electrokinetic effects (Sect. 2.3.5). Both effects occur in bones

and cartilage during in vivo deformations.

Piezoelectricity is comprised of translocations of charges in crystals or crystal-

loid macromolecular structures resulting from mechanical loading. In bones piezo-

electric potentials are mostly the result of deformations of collagens. Furthermore,

under mechanical stress, such deformations cause a flow in the narrow channels of

the bone with negative surface charges. This additionally leads to streaming

potentials. In contrast to the electric fields in the whole body induced by nerves

and muscles, these fields are rather low at larger distances. Conversely, they seem to

be important locally in the process of bone growth and bone remodeling in vivo.

This circumstance has been used in efforts to stimulate bone repair by applying

electric field pulses or ultrasound.

Further Reading

Electric fields near cells: McCaig et al. 2005; Nuccitelli et al. 2008; Shi and

Borgens 1995; EEG: Nunez and Srinivasan 2006; Reilly 1998; electric fields in

bone: MacGinitie 1995; electric fishes: Fortune 2006; Peters et al. 2007.

3.5.3 Passive Electrical Properties of Tissue and Cell Suspensions

In contrast to the membrane potential and the electrical currents driven by

rheogenic pumps, all requiring active biological processes, other qualities like

electrical resistance, conductivity, or membrane capacity can be summarized as

passive electric properties of biological systems. These parameters are essential not

only to calculate the distribution of the actively generated fields and currents in the

organism, as described in the previous section, but also the penetration and induc-

tion of currents in the body caused by external influences (Sect. 4.6.1). This

includes AC fields over a broad frequency range.

To derive the basic parameters and equations, let us first consider the electrical

properties of a plate capacitor filled with material of certain conductivity and
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dielectric constant, such as for example biological tissue. Irrespective of its

dielectrical heterogeneity, this system formally can be described by an equivalent

RC circuit consisting of a conventional capacitor and a resistor in parallel (Fig. 3.39).

An AC voltage applied to such a system generates a current which will flow

through the resistor and periodically recharge the capacitor. This results in an

effective AC resistance which is called impedance, whereas its reciprocal is the

AC conductance or admittance (Y*). In fact, this admittance is determined by the

static conductance (G) of the resistor, and the frequency (o) dependent displace-
ment current passing through capacitor. This behavior can be summarized as

follows:

Y� ¼ Gþ joC (3.201)

This equation includes the imaginary number j ¼ ffiffiffiffiffiffiffi�1
p

transforming the admit-

tance (Y*) into a complex parameter, marked by the superscript*. The reason for this

is the response of the system to the particular time function of the AC-current. For

the behavior of an RC circuit in an AC field not only the amplitude of a sine current

must be taken into account, but also the occurring phase shift which is coded by

the term j.
To understand this, let us consider an AC voltage having the following time

function:

U ¼ Umax sin ot (3.202)

An applied voltage (U) therefore oscillates with an angular frequency (o ¼ 2pn)
and a peak amplitude of Umax. According to Ohm’s law (Eq. 3.51), for a circuit

containing only a resistance the current (I) possesses the same time behavior:

Fig. 3.39 A capacitor consisting of two parallel plates of area A, and a mutual distance d, filled
with an inhomogeneous medium (e.g., cell suspension or biological tissue). Neglecting the real

dielectric heterogeneity, it can be described formally by a RC-circuit (blue)
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I ¼ Imax sin ot (3.203)

In an RC circuit, however, additionally the displacement current of the capacitor

must be taken into account. The charge (q) of a capacitor with the capacity (C) is
determined by the following equation:

q ¼ U C (3.204)

Since the current is defined as the time derivative of charge, for the time-

independent capacity (C), the displacement current (IC) is:

IC ¼ dq

dt
¼ dðUCÞ

dt
¼ C

dU

dt
(3.205)

Introducing Eq. 3.202 into Eq. 3.205 for C ¼ const, one gets:

IC ¼ C
dðUmax sinotÞ

dt
¼ C Umaxo cos ot ¼ C Umaxo sin

p
2
þ ot

� �
(3.206)

Further, defining:

IC max ¼ C Umaxo (3.207)

it follows:

IC ¼ IC maxsin
p
2
þ ot

� �
(3.208)

Comparison of Eq. 3.202 and 3.208 clearly indicates for a simple capacitor a

phase shift of p/2 in between current and voltage.

Consequently, for the AC current in Eq. 3.201 this phase shift, for example the

time course of the capacitive component of the sum, must be considered. This

circumstance is taken into account using a Gaussian plane containing imaginary

numbers. For this in Eq. 3.201 the term oC is multiplied by the imaginary number

j ¼ ffiffiffiffiffiffiffi�1
p

and plotted on the ordinate in these Gauss coordinates.

Equation 3.201 can be modified using the geometrical parameters of the elec-

trode: area (A) and mutual distance (d), together with the material constants:

specific conductivity (g), and permittivity (ee0), whereas:

G ¼ A
d g and C ¼ A

d ee0 (3.209)

Introducing these relations into Eq. 3.201, one gets:

g� ¼ gþ j e e0o whereas : Y� ¼ A

d
g� (3.210)
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In this equation g* is called the complex specific admittance.
In the same way as the complex specific admittance (g*), a complex dielectric

constant (or relative permittivity) (e*) of the system can be formulated. Starting with

the equation for the effective AC resistance of a capacitor (R ¼ 1/oC), one can

introduce a complex capacitance (C*) as follows:

C� ¼ Y�

jo
(3.211)

Inserting the parameters of Eqs. 3.201 and 3.209 into this equation, and consid-

ering C* ¼ e*e0 A/d, and 1/j ¼ �j, one gets:

e� ¼ e� j
g

oe0
(3.212)

The derivation of these basic equations (Eqs. 3.210 and 3.212) allows us to

understand the properties of complex dielectrics in AC fields.

In fact, the electrical properties of biological tissues containing a multitude of

various cells with various size and intercellular clefts are too complicated to be

described by a simple RC circuit as shown in Fig. 3.39. An enormous network of

elementary RC elements with different parameters would be required to build an

appropriate model. This, of course, is impossible for practical use. For this

reason one uses the simplified scheme as shown in Fig. 3.39 with the knowledge

that the properties of the resistor as well as the capacitor are now frequency

dependent.

Figure 3.41 shows mean values of the complex dielectric constants (e*) and the

specific admittance (g*) of various tissues over a broad frequency range. It can be

seen that the specific admittance increases with frequency. The main reason for this

is the increase of the membrane admittance. Conversely, the dielectric constants are

Fig. 3.40 Representation of the conductance (G) of the resistor and the admittance of the

capacitor (joC) of the analog circuit from Fig. 3.39 in the Gaussian plane of complex numbers.

The admittance of the system (Y*) corresponds to the length of the resulting vector. The angle ’
represents the resulting phase shift
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extremely high for tissues at frequencies below the MHz range. They drop to the

standard value of the dielectric constant of water (e � 80) only at microwave

frequencies.

Typically, the dielectric constant of tissues or cell suspensions decreases in a

characteristic step-wise fashion. The reasons for this are the properties of various

kinds of RC-circuits in the system, each with different time constants of relaxation.

These frequency regions, in the first instance have formally been designated as a-,
b-, and g- dispersions (see Fig. 3.42).

Various phenomena are summarized as a-dispersion, which for cell-sized

objects occurs in the frequency range below 10 kHz. Mostly, reactions in the

electric double layer of the cell membranes are responsible for this, such as various

electrokinetic phenomena (see Sect. 2.3.5), for example the deformation of ionic

clouds. Because of various artefacts, related to polarization phenomena of the

electrodes, and electro-osmotically induced convections, it is difficult to measure

the real physical parameters in this frequency region. It is difficult to determine the

individual components of an inhomogeneous dielectric system.

The b-dispersion, also designated as Maxwell–Wagner dispersion, is mostly

based on processes connected to membranes as dielectric barriers. Consequently

these dispersions are caused by structural inhomogeneities of the material, such as

Fig. 3.41 Complex specific admittances and complex dielectric constants of various tissues as

functions of frequency (According to averaged data from Gabriel et al. 1996)

Fig. 3.42 Schematic

illustration of the frequency

regions of the a-, b-, and g-
dispersions of the complex

dielectric constant of a

biological tissue

196 3 Energetics and Dynamics of Biological Systems

http://dx.doi.org/2.3.5#10.1007/978-3-642-25212-9_2


cellular and organelle structures. Some authors subdivide the b-region into b1-, and
b2-ranges which refer to the dispersion of the cell membrane (b1), and cytoplasm

(b2) polarization dispersions, respectively.

The g-dispersion at higher frequencies is caused by so-called Debye relaxations
of various molecular dipoles. At frequencies of the g-dispersion region, even the

resistivity of the internal and external milieu of the cell cannot simply be described

by ohmic resistances (see the small RC-circuits in the resistors of Fig. 3.43).

The dispersion of water dipoles occurs at 18.7 GHz. This in fact, is true only for

free water. Recent measurements indicate that the dispersion of bound water may

occur at frequency regions even below 1 GHz. This is important because of possible

effects of high-frequency electromagnetic fields on biological tissue (Sect. 4.7.1).

The measurement of dielectric properties of solutions and heterogeneous media,

the so-called impedance spectroscopy is used in various applications. Furthermore,

electrical impedance tomography (EIT) has been developed for imaging of particu-

lar dielectric properties of parts of the body. For measurements a multitude of

electrodes is placed on the skin. Proposed applications include the monitoring of

lung function, detection of cancer in the skin or breast, and the location of epileptic

foci. This method, however, is still at an experimental stage and not used in routine

diagnostics.

Further Reading

Barnes and Greenbaum 2006, Gabriel et al. 1996; Holder 2005; Orazem and

Tribollet 2008; Pethig and Kell 1987; Riu et al. 1999; Schwan 1957.

3.5.4 Single Cells in External Electric Fields

Cell suspensions or single cells are exposed to electric fields of various frequencies

in many biotechnological approaches (see Sect. 3.5.5). Therefore, it is important to

analyze field distribution and currents through and around these cells.

Figure 3.43 indicates a simplified electronic circuit, describing the passive

electric properties of a spherical cell in an electrolyte solution. As in Fig. 3.27,

the membrane is represented by a capacitor (Cm) in parallel with a resistor (Rm)

simulating the membrane resistance. At DC, and low-frequency AC fields, the

conductivities of the external and internal media can be described by simple

resistors (Re1, Re2, Ri).

The high specific conductivity of the cytoplasm and the external medium on the

one hand, and the extremely low conductivity of the membrane on the other results

in Rm being more than 7 orders of magnitude higher than Re or Ri. Applying

Kirchhoff’s law, a low frequency current therefore does not flow through the cell,

but around it.

This is demonstrated schematically in Fig. 3.44 where a spherical cell is shown

with the electrical properties as described above. In case of DC fields and extremely
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low-frequency AC fields, because of the high membrane resistance, the field inside

the cell is negligible, and the external field becomes deformed (Fig. 3.44a). The

membrane capacitor will be increasingly bridged with increasing frequency. This

leads to a change of the field distribution in, and around the cell (Fig. 3.44b, c). The

field penetration increases with increasing frequencies. In parallel, the membrane

polarization decreases, and the polarization of the cytoplasm increases. Taking into

account that there is no large difference in the permittivities between medium and

cell plasma, the degree of field penetration will be high and constant at frequencies

above some 100 MHz.

Fig. 3.44 Current lines (–––) and equipotential lines (- - -) in, and around a spherical cell in a

homogeneous electric AC field. In contrast to Fig. 3.45 the polarization charges at the membrane

are not depicted. (a) The cell in a low frequency, (b) and (c) – in a high frequency AC field. In case

B the conductivity of the external medium is lower than that of the internal one, in caseC the cell is

surrounded by a physiological medium where the permittivities of the internal and external milieus

are the same

Fig. 3.43 Simplified analog circuit demonstrating current paths through and around a spherical

cell. Re1 and Re2 – resistances of the external medium, Ri – resistance of the cytoplasm, Rm –

membrane resistance, Cm – membrane capacity, cref – reference potential at the symmetry plane of

the system, cind – induced potential at the membrane surface. At higher frequencies RC properties

must be attributed to the resistances Re1, Re2, and Ri too (Internal and external resistors were split to

obtain a reference potential cref)
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Let us consider the case of Fig. 3.44a in detail in order to discuss the influence of

external fields on the membrane potential of a spherical cell in DC or in extremely

low-frequency AC fields (Fig. 3.45). Neglecting the conductivity of the membrane,

it can be understood that the external field leads to an accumulation of charges,

especially in membrane areas that are orientated perpendicular to the undisturbed

current lines. This leads to a deformation of the external electric field, and to the

charging of the membrane capacitor. The polarization of the membrane induces an

intracellular counter-field which significantly mitigates the field influence from

outside (short arrows inside the cell). Because of the low field strength inside the

cell, a possible polarization of the membranes of cell organelles can be neglected, at

least at DC, or low-frequency AC fields.

The transmembrane potential difference Dcind induced by an external field,

corresponds to the difference cref – cind in Fig. 3.43. There is no potential

difference across the resistor Ri and no current flows inside the cell.

Fig. 3.45 The distribution of charges and potentials at a spherical cell in an external DC field. In

the upper part the arrows indicate direction and strengths of the field vectors. The charges near the

membrane are the result of polarization by the external field. In the lower part of the figure, the

potential profile is depicted over the x-axis through the center of the cell: - - - membrane potential

without external field influence, including the undisturbed in vivo transmembrane potential (DcM);

- - - - potential induced by the external field, without the in vivo potential (induced potential

difference: Dcind); ––– actual potential function, as the sum of both functions and the resulting

membrane potential differences at both poles of the cell (Dc1, Dc2). cref is the reference potential

according to Fig. 3.43. In contrast to Fig. 2.48, the electric double layer is not taken into account

for simplicity
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Because of the deformation of the external field by cell polarization (Fig. 3.44a),

the potential cind (Fig. 3.43) is somewhat different from the potential at an identical

x-coordinate away from the cell. This was taken into consideration introducing

the resistor Re1 and a bending of the extracellular potential function near the

membranes in the lower part of Fig. 3.45. The extent of this deviation depends on

the shape and the radius (r) of the cell. In the case of a spherical cell, the

characteristic distance from the center of the spherical cell is 1.5r.
The polarity of the induced potential difference (Dcind) at both sides of the cell

corresponds to the external field, whereas the undisturbed in vivo transmembrane

potential DcM is always oriented inside-out. Therefore, the cell is polarized in the

same direction as the induced potential difference (Dcind) on one side, and oriented

in an opposite direction on the other side. This means that the resulting potential

differences (Dc1, Dc2) differ from one another on both sides of the cell. The in vivo

potential at locations oriented perpendicular to the field lines will not be influenced

by the external field at all. For this reason, the reference level for the induced

potential (cref) is identical inside and outside the cell in Fig. 3.45.

To calculate the induced membrane potential (cind), a small column can be

considered. It is oriented in the field direction and cut out along a line through

the center of the sphere with the cross-sectional area A. The characteristic length

up to which cell polarization may enhance the external medium potential is

re ¼ 1.5r. Furthermore, we shall consider that the Ohmic current flow through

the membrane resistor Rm (Fig. 3.43) can be neglected. In this case the following

relations apply:

Ri ¼ r

giA
; Re1 ¼ 0:5r

geA
¼ r

2geA
; Cm ¼ C

A
(3.213)

Furthermore, the time constant (t) can be considered reflecting the characteristic
time to charge the membrane capacitor:

Fig. 3.46 A column with a

constant cross-sectional area

A, cut out from the cell

(Fig. 3.43), and the electric

scheme for the corresponding

circuit. The resistor Rm and

the capacitors for the

cytoplasmic and external

media are neglected

(Corresponding to the

approach of Gimsa and

Wachner 1999)
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t ¼ CðRi þ Re1Þ ¼ r Cm
1

gi
þ 1

2g2

� �
(3.214)

Considering an external field of strength E, the potential difference outside the

cell, from point cref to c1.5 r is: 1.5rE. The same potential must drop over

the column. Using the proportionality between the impedance, as effective AC

resistance, and the potential drop, and considering the impedance of the membrane

capacitor: Z* ¼ 1/Y* ¼ �j/oC, we get:

Dcind

1:5Er
¼ �j=oC

�j=oCþ R1 þ Re1
¼ �j

�jþ oCðR1 þ Re1Þ (3.215)

Introducing the time constant of Eq. 3.214 and rearranging, leads to:

Dcind

1:5Er
¼ �j

�jþ ot
(3.216)

Noticing that:

j � jþ aj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
We obtain for the absolute value of the induced transmembrane potential:

Dc0
ind

1:5Er
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ o2t2
p (3.217)

After rearrangement and introduction of the expression t from Eq. 3.214 one

gets:

Dcind ¼
1:5 rEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ roCm
1
gi
þ 1

2ge

� �h i2r (3.218)

This is the maximum of the membrane potential induced in the direction of the

external field. At an angle perpendicular to the field (Fig. 3.45) the induced

transmembrane potential vanishes. To consider the induced potential at all points

of the sphere, the radial coordinate a can be introduced, and Eq. 3.218 must be

multiplied by cosa.
Using common cell parameters, like for example: r ¼ 10�5 m, Csp ¼ 10�2 F m�2,

gi ¼ 0.5 S m�1, and ge ¼ 1 Sm�1 in Eq. 3.217 a relaxation time of t ¼ 2.5·10�7 s is

obtained. Introducing this parameter into Eq. 3.18 it is easy to demonstrate that for low-

frequency AC fields (n < 105 Hz), the denominator of this equation will approach 1.
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For DC fields and low-frequency AC fields, including the dependence of the

vector angle a, the equation reduces to:

Dcind ¼ 1; 5 Er cos a (3.219)

As already mentioned, this, as well as Eq. 3.218, is correct only for a very high

membrane resistance which is justified in most cases. Using this equation one can

for example calculate that in a spherical cell with a diameter r ¼ 10 mm a

superimposed transmembrane potential of Dcrel ¼ 1.5 V will be induced at posi-

tion a ¼ 0� by an external low frequency, or DC field of approximately

E ¼ 100 kV m�1.

As will be considered in the next section, this equation is useful to calculate the

field strength which is necessary to manipulate cells by electric membrane break

down or cell-cell fusion. Conversely, it must be noted that it is not applicable to the

calculation of stimulus thresholds for muscle and nerve tissues (see Sect. 4.6.2). In

this case, there are complicated situations of field distribution in the intercellular

space. Furthermore, these cells are extremely elongated. Finally, in some cases they

are electrically connected to one another by gap junctions. In this case, not the

length of the individual cell in the field direction is representative of the induced

membrane potential, but the length of the whole electrically connected system.

Further Reading

Gimsa and Wachner 1999; Grosse and Schwan 1992.

3.5.5 Manipulation of Cells by Electric Fields

The interaction of cells with external electric fields as discussed in the previous

section has led to various applications in biotechnology. In contrast to the effects of

weak electric and electromagnetic fields on biological systems, which we will

discuss later (Sects. 4.6, 4.7), these applications require rather strong fields. Field-

induced charges that accumulate at cell–medium interfaces on the one hand influ-

ence the transmembrane potential (Dc), and on the other directly induce mechani-

cal forces which are able to move or deform the cells.

The application of strong electric fields in physiological solutions with consid-

erable conductivities will, of course, induce significant Joule-heating. The electrical

power, absorbed in a medium per volume equals E2g (see Eq. 4.23). For a specific

conductivity in a physiological milieu of approximately g ¼ 1 S m�1, the applied

field strength of E ¼ 105 V m�1, as required for these applications, results in an

absorbed power density of 1010 Wm�3, i.e., 107 W kg�1. This leads to an enormous

local heating of the system which can only be avoided by the use of short field

pulses, an artificial medium of low conductivity, or microscopic electrode systems

with relatively large heat-conducting surfaces.
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Let us first consider the influence of strong electric fields on the hyper-, or

hypopolarization of the membrane. As explained in the previous section, an exter-

nally applied DC field increases the membrane potential (Dc1 in Fig. 3.45) on one

side of the cell, and consequently, raises the internal electric field strength in the

membrane at this point. As mentioned in Sect. 2.2.1, the electric transmembrane

field in vivo is nearly 107 V m�1. If the transmembrane potential is artificially

elevated, reaching an amount of approximately one volt, the internal field strength

becomes overcritical, and the membrane will be destabilized. In this so-called

electric break down the membrane loses its property as a diffusion barrier. Its

electrical resistance breaks down, which may even lead to complete destruction of

the cell by subsequent lysis. However, by selecting the parameters of treatment

properly, i.e., using moderate shape, amplitude, and duration of the pulse at optimal

temperature and electrolyte conditions, a reversible electric break down can be

induced. This additionally requires use of the proper composition of the external

medium to avoid Donnan-osmotic cytolysis of the cells (see Sect. 3.2.5). In this

case, the membrane may stabilize again and the cell may survive. The duration of

the applied field pulses is of the order of 1–500 ms.
The electric break down of cell membranes is used for so-called electroinjection

or electropermeabilization. When cells are suspended in a solution containing

macromolecules or small particles, the short moment of the induced membrane

destabilization may be sufficient to allow the penetration of these molecules or

particles into the cell with sufficient probability. Additionally, such disturbances of

the membrane structure can also increase the ability of the cell to absorb particles

by phagocytosis. Electroinjection is used for example to introduce drugs, genetic

materials, or even small organelles into cells.

The basic equation for the external field which is necessary to reach the required

membrane field for these manipulations was introduced in the previous section

(Eqs. 3.218, 3.219). It indicates that the external field strength (E) which is required

to induce an electric break down is inversely proportional to the cell radius (r).
Stronger external fields therefore are needed for smaller cells. Recently, conditions

were investigated to achieve break down also in intercellular organelles, such as

mitochondria or chloroplasts. For this, nanosecond pulses are used with field

strengths up to 107 V m�1.

If two cells are attached to each other during application of an electric pulse, or a

short time after the pulse, the points of induced membrane instability may interact

with each other, leading to a fusion of the lipid phases of the membranes of the

neighboring cells. Subsequently membrane fusion, an osmotically governed pro-

cess of fusion of the whole cell may follow. This process of electrofusion of cells

has recently been explained by several mechanisms which cannot be discussed here

in detail. Membrane and subsequently cell fusion are in fact triggered by electric

pulses, but need a time longer than the pulse duration to be accomplished.

Electrofusion of cells is broadly applied in biotechnology. In contrast to the

induction of cell fusion by some chemical agents, electrofusion has the advantage

of being much more selective. Using sufficiently small electrodes, it is possible to

fuse even two particular cells. Meanwhile, methods have been developed to bring

3.5 Electric Fields in Cells and Organisms 203

http://dx.doi.org/10.1007/978-3-642-25212-9_2


specific cells into contact with each other. Usually, an aggregation by dielectro-

phoresis is used for this purpose.

Charge separation, i.e., the induction of cell dipoles of various quality, leads to a

number of electromechanical phenomena. These can be used either to separate and

mechanically manipulate cells, or to directly measure dielectric properties of

individual cells (Fig. 3.47).

In general, two qualitative cases of cell polarization exist. At frequencies

below membrane dispersion the effective charge distribution is opposite to the

case at higher frequencies, where the membrane is fully capacitively bridged.

Corresponding to this, at low frequencies cells will be compressed by the field,

whereas they will be stretched in high frequency fields.

In inhomogeneous fields, the cell hemisphere in the higher field area experiences

a higher polarization, i.e., a higher force than its opposite. This imbalance leads to a

Fig. 3.47 Various electromechanical effects on a spherical cell model. Above: general

distributions of charges near the membrane in relation to electrode charges. Below: snapshots of

charge distributions in homogeneous, inhomogeneous, and rotating AC-fields at different

frequencies
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translocation of the cell which is called dielectrophoresis (Fig. 3.48). The direction
of the dielectrophoretic translation depends on the orientation of the effective

polarization of the cell and on the orientation of the field gradient. According to

the polarization effects there are frequency regions of negative as well as of positive
dielectrophoresis (see Fig. 3.49). The driving forces in all electromechanical pro-

cesses are proportional to the square of the field strength (E2). Because of the

deformation of the field around the individual cells (see Fig. 3.44), the gradient of

Fig. 3.48 The

dielectrophoresis of yeast

cells in an inhomogeneous

field which spans between the

peak of a needle, shown as a

small hemispheric electrode,

and a flat electrode opposite.

The figure shows the

accumulation of the cells near

this electrode as a result of

positive dielectrophoresis.

The polarization of the cells

additionally leads to their

mutual attraction and the

pearl chain formation

Fig. 3.49 An example of electrorotation (green line) and dielectrophoresis (blue line) of a cell in a

solution of low conductivity, dependent on the applied frequency. Positive values of the

electrorotation spectrum mean spinning in the direction of field rotation (cofield rotation), or in

the case of dielectrophoresis a movement into the direction of higher field intensity, and vice versa.

Additionally, the parameter Dcrel ¼ [1 + (2pn)2]�1/2 is depicted as a function of frequency

(red line) according to Eq. 3.218. It describes the influence of the induced membrane potential

(with the help of Wachner and Gimsa)
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the fields directly near the cells results in mutual dielectrophoresis, i.e., in the

attraction of cells to each other. This leads to the formation of pearl chain-like

structures. This effect can of course occur also in homogeneous external fields.

As depicted in Fig. 3.47 in rotating fields the dipole induction results in

electrorotation. Rotating fields can be applied using multielectrode systems. In

the case of a four-electrode system, as shown in this scheme, a generator produces

an AC signal with adjustable frequency, which is split into four signals of

particular phase relations. In this case, the field rotates at the frequency of the

generator. Correspondingly, the induced dipole rotates too. Because of the time

constant of polarization, an angular difference however may occur in between the

induced dipole, and the external field vector. This leads to a permanent force of

interaction between them, either in the form of repulsion, resulting in an antifield
rotation at low frequencies, or attraction at higher frequencies, the so-called

cofield rotation. The resulting rotation frequency of the cells in the chamber is

much smaller than that of the field, and again is proportional to the square of the

applied field strength. In contrast to dielectrophoresis, which can be described by

the real part of the induced dipole, electrorotation is related to its imaginary

component.

In Fig. 3.49, as an example, the frequency dependence of electrorotation of a cell

in a low conductivity medium is depicted. It shows that the antifield rotation occurs

at frequencies of about 100 kHz, followed by a point of zero rotation and finally, in

the MHz region a maximum of cofield rotation occurs at about 50 MHz.

Figure 3.47 represents the simplest case, a single shell model, which considers a

dielectrically homogeneous sphere, covered by a membrane. It represents a spheri-

cal cell without electrically significant organelles (Fig. 3.43). Non-nucleated

swollen erythrocytes can be described by this model. In this case, the radius of

the cell and the membrane thickness are included as geometrical parameters in

the corresponding equations, as well as the conductivities and permittivities of the

membrane, the cytoplasm, and the external medium. These model considerations

indicate that the peak of the antifield rotation in its frequency position, and its

amplitude, reflects the membrane properties of the cell. This first characteristic

frequency is determined by the time constant given by Eq. 3.214. Changing the

permeability of the membrane as a diffusion barrier, this peak vanishes. The

maximum of the cofield rotation, i.e., the second characteristic frequency, indicates

the conductivity and permittivity of the cytoplasm in relation to that of the external

milieu.

Electrorotation and dielectrophoresis are approved methods to measure dielec-

tric properties of individual living cells. There are a number of investigations

indicating that electrorotation can measure alterations of cell properties which are

induced by drugs, toxic agents, virus attacks, cell activations, and other events.

Under special conditions even properties of organelles like nuclei or vacuoles can

be measured. Automatic video systems and methods of dynamic light scattering are

applied to register the induced movement.

In contrast to electrorotation, which is mostly used for cell analyses, dielectro-

phoresis can also be applied for preparative cell separation and other
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biotechnologically interesting techniques. As already mentioned, the formation of

cell chains, or cell-cell attachment by dielectrophoresis is used to perform selective

electrofusion of cells by applying short pulses of high field intensity. Recently,

special microdevices have been constructed to investigate single cells by

electrorotation and to manipulate them by dielectrophoretic translations. According

to the large relative surface of such chambers in relation to their volume, heating of

the samples was minimized. This allows one to apply dielectrophoresis and

electrorotation also in physiological solutions of relatively high conductivities. It

is also possible to produce microscopic field traps, in which cells, lifted by

dielectrophoretic force can be held in a stable position without any surface contact.

Using electrode arrangements inducing traveling waves (Fig. 3.50), cells can be

moved on microchips. This new technique opens enormous possibilities for bio-

technological applications.

Further Reading

For electrorotation and dielectrophoresis: Georgiewa et al. 1998, Gimsa and Wachner

1998; Fuhr et al. 1996; Fuhr andHagedorn 1996; electromanipulation and electrofusion:

Cevc 1990; Kolb et al. 2006; Lynch andDavey 1996, Zimmermann 1996; dielectric cell

deformation: Sukhorukov et al. 1998; Ziemann et al. 1994.

3.6 Mechanical Properties of Biological Materials

Biomechanics is a branch of biophysics that examines mechanical properties of

biological materials and forces acting upon and within the biological structure, as

well as effects produced by such forces. It explains the anatomical stability of plants

and animals, the movements of limbs, and in this way the mechanics of walking,

flying, and swimming. A special branch of biomechanics, biorheology concerns the

mechanics of blood flow and other kinds of fluid movement inside the organism.

Hearing and other kinds of acoustic organs can be explained on the basis of various

kinds of cellular mechanoreceptors.

Fig. 3.50 Cells moving in a

system of interdigitated

travelling-wave electrodes.

Note that the direction of field

propagation is opposite to the

direction of cell motion

according to negative

dielectrophoresis (After Fuhr

et al. 1996)
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Biomechanics is in fact one of the oldest branches of biophysics. Its development

followed closely that of physical mechanics itself. In the period of renaissance the

pioneers of mechanics, such as Gallileo Galilei, René Descartes, Isaac Newton, and

many others were always also interested in the mechanics of animals. The first

classical book on biomechanics, Alfonso Borelli’s “De motu animalium” was printed

in Rome in 1680. It already contained basic physical considerations on swimming,

flying, andmovement of animals as well as various calculations ofmoments of human

limbs and the spine under conditions of loads. As we alreadymentioned in Sect. 1, this

book marked the beginning of medical physics, which was called at that time “iatro-

physics.” Furthermore, D’Arcy Thompson’s book “On Growth and Form,” published

first in 1917 must be mentioned. This book analyzed for the first time basic processes

of cell mechanics, shape formations, and many other biomechanical fields.

In recent decades biomechanics has become increasingly important in

diagnostics and therapeutics, especially the biophysics of blood circulation

(hemorheology), including the properties of blood vessels and the pumping

properties of the heart, the biomechanics of the skeleton, as well as of limbs and

joints, all of which form the basis for medical physics and medical engineering.

A further interest in special questions of biomechanics comes from sport. Here

various kinds of complex body motions are of interest to optimize outcome. There

is also interest in biomechanics from ecology, considering life in moving fluids,

wind resistance of plants, etc.

Further Reading

On biomechanics in general, Alexander 2003; Bels et al. 2003; Chein et al. 2008;

Fung 1993; Nigg and Herzog 2007; Niklas 1992; Oomens et al. 2009; Özkaya and

Nordin 1999; Skalak and Chien 1987; Vogel 1994.

3.6.1 Some Basic Properties of Fluids

Many parameters characterizing the physical property of a fluid are defined for the

case of laminar flow. A flow is called laminar if particles of the fluid move in

parallel layers to each other (for more on the properties of laminar flow see

Sect. 3.7.1). Figure 3.51 illustrates examples of three kinds of laminar flow. In

contrast to turbulent flow, processes in laminar flows can be calculated by linear

thermodynamic approaches (see Sect. 3.1.3, Fig. 3.3).

To understand the approaches of fluid mechanics, and to characterize laminar

fluid profiles, we first need to introduce the velocity gradient (g), also known as

shear rate. It is the derivation of the streaming velocity (v) with respect to a

coordinate (z), perpendicular to the direction of the flow.

g ¼ dV

dz
(3.220)
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The measure of this velocity gradient is therefore s�1.

The shear rate of a moving fluid is at a maximum near a solid surface, or in the

case of a tube, near the wall. Far away from the surface this gradient becomes zero.

If two parallel plates slowly move one in relation to the other, they generate a

laminar flow in between, the velocity gradient of which is always constant, and is

equal to the relative velocity of the plates, divided by their mutual distance (g ¼
Dv/Dz).

The force (F) driving a plate with a surface A in the case of laminar flow is

proportional to the velocity gradient (g) between the two plates:

F ¼ �g A (3.221)

In this equation a friction coefficient (�) is introduced which is called viscosity.
The viscosity therefore determines the force, which is required to move a plate with

an area of 1 m2, at 1 m distance from a parallel surface at a velocity of 1 ms�1, if a

laminar flow of a liquid between these surfaces is induced. Thus, the measuring unit

for the viscosity is: Nsm�2, or: Pa · s. Sometimes an older unit P (Poise) is used,

whereas: 1 P ¼ 0.1 Nsm�2.

Parallel to the viscosity (�), another parameter, the fluidity (’ ¼ 1/�) is used, as
well as the kinematic viscosity (n ¼ �/r), a parameter, containing the density (r) of
the fluid. The force deforming a body in a streaming fluid with a velocity gradient

(g) is given by the sheer stress (t):

t ¼ �g (3.222)

The viscosity depends to a high degree on the temperature. Especially for

aqueous solutions this is caused by the cluster structure of the water (see Sect.

2.2.2). In contrast to the viscosity of pure water at T ¼ 0�C, which is 1.79 mPa s, it

amounts at 25�C to only 0.89 mPa s, and at 100�C, finally to 0.28 mPa s (see

Fig. 2.16 in Sect. 2.2.2).

In order to characterize the influence of dissolved or suspended substances on the

viscosity of a fluid, the following derived parameters are used:

Fig. 3.51 Various examples of laminar velocity profiles
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Relative viscosity: �rel ¼ �
�W

Specific viscosity: �sp ¼ �rel � 1

Reduced viscosity: �red ¼ �sp
c (in: 1 mol�1)

Intrinsic viscosity: ½�� ¼ lim
c!0

�red (in: 1 mol�1)

where � is the viscosity of the solution of suspension, �W is the viscosity of the

pure solvent, and c is the molar concentration of the solute.

The viscosity increases with increasing concentration of the dissolved or

suspended substances. As already pointed out in the definition of the intrinsic

viscosity [�], even the reduced viscosity of a solution is a function of the concen-

tration. The intrinsic viscosity contains information on the structure and the molec-

ular mass of a substance.

For diluted suspensions of small rigid spherical particles the Einstein relation
can be applied:

�sp ¼ 2 5Vrel ðfor : Vrel<0:1Þ (3.223)

The relative volume (Vrel) is the volume of all particles in the suspension

together in relation to the volume of the suspension. For suspension of cells

(sperms, erythrocytes, etc.) the term cytocrit (or specifically spermatocrit, hemato-
crit) is used. It should be emphasized that neither the absolute size of an individual

particle, nor the homogeneity of the diameters of all particles in the suspension are

of importance for this relation. The Einstein equation, however, is correct only for

very diluted suspensions.

Fluids, the viscosity of which is independent of the velocity gradient (g) are
called Newtonian fluids. In contrast, non-Newtonian fluids alter their viscosity

depending on this parameter.

In Fig. 3.52 the behavior of various kinds of non-Newtonian fluids are

demonstrated. Dilatant fluids are mostly suspensions of solids, like quartz particles.

They produce entropy by mutual friction as much as the shear rate of fluid

increases. The Bingham-plastic behavior occurs, for example, in a suspension of

Fig. 3.52 The dependence of

the viscosity (�) on the

velocity gradient (g) for a
Newtonian fluid (––––), and

for various types of non-

Newtonian fluids (––––)

(After Glaser 1989)
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nonspherical particles. In this case velocity gradients lead to their orientation,

which decreases the viscosity of the suspension. At certain points, if the particles

are oriented at maximum these suspensions behave like Newtonian fluids. The same

behavior is to be expected if the particles tend to aggregate in the resting fluid, but

disaggregate at low shear stress.

The most common property of biological fluids is the pseudoplastic behavior. It
occurs for example in blood (Sect. 3.6.2, Fig. 3.54), and many other biological

fluids with heterogeneous composition. Different components of these fluids, such

as for example blood cells, proteins and other macromolecules, aggregate, orien-

tate, and deform at various shear gradients. The resulting function, therefore, does

not come to a saturation level at reasonable values of g.
These shear-induced processes of course need some time to become established.

In the case of spontaneous induction of a shear gradient, or of a sudden change of it,

a time dependence of the viscosity occurs. This behavior was first observed in 1923

in gels, which could be transformed by shaking into a liquid sol. The same property

was also found in the viscous behavior of cell protoplasm. The term “thixotropy”

was introduced as a combination of the Greek words thixis (stirring, shaking) and

trepo (turning or changing). According to the IUPAC terminology: thixotropy is

defined as the continuous decrease of viscosity with time when flow is applied to a

sample that has been previously at rest and the subsequent recovery of viscosity in

time when the flow is discontinued. Confusion between thixotropy and shear

thinning still persists in some cases in the literature. Therefore, it should be

emphasized that thixotropy applies to the time dependence of non-Newtonian

behavior of a liquid.

The opposite phenomenon also exists, i.e., a reversible, time-dependent increase

in viscosity. This could be the result of flow-induced aggregation of particles. This

is called antithixotropy, earlier known as rheopexy. In the next section we will

demonstrate these properties for the case of the behavior of blood.

These properties of fluids must be taken into account, when choosing

instruments to measure the viscosity. Some of the most common methods are

depicted in Fig. 3.53. In the case of a capillary viscosimeter (Fig. 3.53a) the time

is measured which a given fluid needs to pass a capillary under a known pressure.

For this, a certain volume of the fluid is placed in the left part of the U-tube and the

time is measured for the fluid to pass the two marks M1 and M2. This time is

proportional to the viscosity. In this way the viscosity can be measured after

calibration of the setup using a fluid with known viscosity. This so-called Ostwald

viscosimeter was later modified by Ubbelohde in such a way that a further vertical

tube arranged at the end of the capillary leads to an interruption of the fluid. Another

way, to measure the viscosity of a fluid is the use of falling bodies (Fig. 3.53b). Both

methods have the advantage of being simple and in relation to other equipment,

inexpensive. However, conversely they are only suited to measuring the viscosity of

Newtonian fluids because the velocity gradient of the streaming fluid in the

capillary, as well as between the falling sphere and the wall of the tubes, are not

at all constant (see Fig. 3.51).
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To investigate the viscosity of non-Newtonian fluids measuring instruments are

required which allow one to establish well-defined shear gradients. As

demonstrated in Fig. 3.51, this is possible between plates moving parallel to each

other. This principle is used in so-called Couette, or rotational viscosimeters. In this
case the fluid is placed in the gap between two coaxial cylinders (Fig. 3.53c), or

between a flat plate and a truncated cone (Fig. 3.53d). By moving one part of this

equipment, the viscosity of the fluid transmits a torque which can be measured.

Usually, one part is rotated with adjustable speed, and the torque of the opposite

part is measured by a sensitive instrument. By changing the speed and the thickness

of the cleft, one can produce various velocity gradients. In the case of the rotating

cone the tangential velocity is compensated by the increasing broadness of the cleft.

Therefore, in this case a constant velocity gradient is also established. Curves like

those shown in Figs. 3.52 and 3.54 are produced using such instruments.

Recently, the Stabinger viscosimeter has been used as a modification of the classic

Couette rotational viscosimeter. In this case, the internal cylinder is hollow and thus

floats freely in the sample, centered by centrifugal forces. This avoids any bearing

friction. The torque of this cylinder is implemented by a rotating magnetic field.

Further Reading

On thixotropy, Mewis and Wagner (2009).

3.6.2 The Viscosity of Biological Fluids

Through the development of sensible rotational viscosimeters it was possible to

investigate viscous properties of a large number of biological materials, such as

Fig. 3.53 Various setups to measure the viscosity of fluids. (a) Capillary viscosimeter after

Ostwald, (b) viscosimeter with falling sphere, (c) coaxial-type rotational viscosimeter, (d) cone-

type rotational viscosimeter
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blood, lymph, various secretions, synovial fluids, and many others. This has led on

one hand to a better understanding of the processes of blood flow, of the mechanics

of joints, etc., and on the other hand it has become a useful indicator in diagnostics.

In Fig. 3.54 the viscosity of a suspension of red blood cells is depicted as a

function of the velocity gradient. In contrast to blood plasma which appears to be a

Newtonian fluid, these suspensions, as well as the whole blood, indicate

pseudoplastic thixotropic behavior. The reason for this is complex: Native

erythrocytes, suspended in blood plasma aggregate at low shear rates. These

aggregates are not very stable and disaggregate at somewhat higher shear rates.

This disaggregation lowers the viscosity of the suspension. A further increase of the

shear rate leads to orientation, and finally to a deformation of the erythrocytes,

further decreasing the viscosity. Looking at the behavior of erythrocytes which

were hardened by fixation, neither the aggregation, nor deformation caused by

shear stress occurs. Living erythrocytes in the shear gradient become elongated

ellipsoids that are oriented along the streaming vectors. With increasing shear stress

they become more and more elongated. Whereas slow elongations are reversible up

to a certain degree of elongation, irreversible alterations in the membrane occur.

Eventually hemolysis occurs as a result of maximal shear stress.

The energy of the streaming fluid which leads to deformation of the cells

corresponds to the shear stress (t) according to Eq. 3.222. This means that it

depends not only on the velocity gradient (g), but additionally on the viscosity (�)

Fig. 3.54 The relative viscosity (�rel) dependent on the velocity gradient (g) of human blood

(––––), and heat-hardened erythrocytes, which were resuspended in plasma (––––). The difference

of both curves in the region of low shear rates is achieved by aggregation, disaggregation and

elongation of the native red blood cells at increased shear rates. (Data from Lerche and B€aumler

1984)
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of the fluid. To investigate shear-induced shape deformations therefore, high

viscosity solutions are usually used, for example, solutions of high molecular

weight dextrans of various concentrations.

For biomechanical problems in orthopedics the properties of the synovial fluid

which is located in the joint cavity and surrounded by the joint capsule are of

particular interest. In the language of tribology, which represents the effects of

friction in moving machines, the mechanism of joints represents a kind of depot
lubrication with porous surfaces. The expression “depot lubrication” points to the

synovial fluid which is accumulated in the bursa of the joints. “Porous surface”

refers to the articular cartilage which covers the cortical bone in the joint capsule by

a 0.3–0.5-mm thick layer. The joints are not only burdened by movement, i.e., by a

shear stress of the synovial fluid, but additionally in some cases by a considerable

static pressure. It must be guaranteed that these loads do not press the synovial fluid

out of the cleft. In fact the synovial fluid has thixotropic pseudoplastic properties.

A large viscosity of this fluid in the joints (� between 1 and 40 Pa s) prevents its

exclusion from the cleft by hydrostatic pressure. If the joint is moving however,

shear rates up to 105 s�1 appear. In this case, the viscosity of the synovial fluid

decreases to 10�2 Pa s, leading to a highly effective lubrication of the joint. This

particular property of synovial fluid is caused by a special structure of proteoglycans,

which are high molecular weight glycoproteins with an intriguing structure.

This leads us to considerations of the viscosity of microscopic, or even supra-

molecular structures. It must be pointed out that the definition of the viscosity, as

given in the previous Sect. 3.6.1, again comes from continuum physics. It does not

take into account the behavior of molecules and supramolecular composition of the

liquids. It just considers a homogeneous, continuous fluid without any structures.

Already the non-Newtonian behavior discussed above indicates some limitations of

this assumption. Moreover, problems arise, if we consider viscoelastic properties of

cells and their constituents. At the beginning of the twentieth century, at a time

when the physical properties of cells were first being discussed, many investigators

measured the viscosity of the cytoplasm in relation to various biological functions.

This question from a modern point of view is outdated because of our knowledge of

the highly organized structure of this region. Even in cells with pronounced cytoplas-

mic streaming as in amoebas or in plant cells the question of the origin of these

movements and of the molecular mechanisms driving these flows, is of more central

interest than phenomenological models using plasma viscosity in general.

The problem of viscosity in molecular and supramolecular dimensions is impor-

tant to a high degree in relation to the “viscosity” of the cell membrane (see also

Sect. 2.3.4). Various molecular probes allow us to obtain physical parameters of the

membrane, which in any case are functions of the viscosity. So, for example, a

lateral diffusion constant of fluorescent labels in the membrane can be measured.

Using the Einstein equation (Eq. 2.39) some conclusions can be made on the

viscosity of their surrounding medium. In the same way the rotation diffusion

constant of specific spin-probes bound to particular membrane molecules,

measured by electron-spin resonance techniques (ESR), allows us to determine

the viscosity. Furthermore, microscopic stress deformations can be applied.
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In all cases the viscosity which is determined by these methods is a typical

effective parameter. In the same way as for example the hydration radius of an ion

(see Sect. 2.2.2), this parameter depends on the techniques and the physical

phenomenon used for its determination. One should not consider these “quasi-

viscosities” in the same sense as the phenomenological viscosity of a fluid which

we discussed before. Moreover, the mechanical anisotropy of the membrane must

be taken into account, which means that the mobility of particles is not equal in all

directions of space.

Further Reading

Leyton 1975; Owens 2006; Skalak and Chien 1987.

3.6.3 Viscoelastic Properties of Biomaterials

The simplest kind of deformation of a body is its stretching, hence the basic

parameters of viscoelasticity are defined for this case. In Fig. 3.55 this is illustrated

by a stress–strain diagram, the coordinates of which are defined as follows:

Stress: s ¼ F
A ðin : N m�2Þ (3.224)

Strain : e ¼ Dl
l (3.225)

where: F is the force, A is the cross-sectional area of the body, l its length, and Dl is
the difference between the resting and the extended material. The strain (e) is just a
relation and therefore does not have a measuring unit.

In general this diagram indicates some regions of different behavior: In the

region of minimal strain up to the limit of proportionality (P) Hooke’s law is valid

stating that the strain (e) is directly proportional to the stress (s). The ratio of these

two properties is called the modulus of elasticity, or Young’s modulus (Y).

Y ¼ s
e

(3.226)

Fig. 3.55 A generalized

stress–strain diagram.

P – limit of proportionality,

E – limit of elasticity,

V – limit of reversible

viscoelastic deformation,

F – point of floating

deformation, R – rupture

point, e0, e00 – residual strains,

blue area – resiliance
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Young’s modulus (Y) has a measuring unit N m�2 or Pa. Because of

the large amount of this parameter in common materials, mostly the units

1 GPa ¼ 103 MPa ¼ 109 Pa are used.

The linear relationship between stress and strain does not hold for large stress

behind point P. The deformation however, is reversible up to the elastic limit (E).

This means that the body will spontaneously and quickly return to its original length

when the deforming force is removed. In this case, however, the relaxation curve

(blue dotted line) did not follow the extension curve (red line). The area between

these two lines is called resiliance. In general the area in this plot, i.e., the product

of stress and strain has the unit of energy. The resiliance therefore represents the

thermal energy which is dissipated during the process of extension and relaxation.

In terms of irreversible thermodynamics it is the dissipation function (F) of this

process (see: Eq. 3.64, Sect. 3.1.4). It results from the viscous friction within the

body and is an expression of the nonideal behavior of the system.

If the strain is taken beyond the elastic limit (E), the body begins to deform

irreversibly. Up to the limit of viscoelastic deformation (point V), the body quickly

relaxes to some residual strain (e0) which eventually may slowly vanish.

Overcoming this point, an irreversible deformation (e00) persists after the stress

has been removed. A further extension leads to the point where the body begins to

show spontaneous flowing elongation, in spite of further increase in stress until it

rips up at point R.

This stress–strain diagram indicates that the deformation of a body outside the

limit of proportionality depends not only on elastic, but also on viscose properties of

the material. For this the term viscoelasticity is used. Biological tissue shows

viscoelasticity to a great extent. In this case not only the stationary stress–strain

function is important, as demonstrated in Fig. 3.55, but also the kinetics of defor-

mation. It is possible to simulate the strain behavior of elastic and viscoelastic

materials by mechanical systems made up of elasticity elements, as well as of

viscosity, or damping elements (see Fig. 3.56). In contrast to the spring, which, if it

is massless, elongates immediately if a rectangular force function is applied, the

viscous damping element (e.g., a dashpot) elongates with a constant velocity and

remains in position if the force vanishes. A damping element such as a dashpot

combined in series with a spring is called a Maxwell element. In the case of an

applied rectangular function of force, the spring elongates immediately, then a

further continuous elongation of the system proceeds. If the force vanishes, the

spring contracts but the viscous part of the Maxwell element remains elongated. If a

spring and a damping element such as a dashpot are connected in a parallel

arrangement we obtain a Kelvin–Voigt element. In this way a sudden increase of

the force (F), leads to an exponential elongation of the system which will contract in

the same way if the force vanishes.

Real systems must be regarded as being made up of both Maxwell and Voigt

elements in various combinations and with different properties (e.g., Maxwell–
Weichert models). Correspondingly, complicated strain-relaxation graphs and complex

kinetic behavior is to be expected. If the time constants of the viscous elements are large
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in comparison to the length of the mechanical impulse, i.e., in the case of a short-term

mechanical stress, viscoelastic systems can respond elastically.

Parallel to the strain function [e(t)] as a result of an applied function of force

[F(t)] (isotonic tension) as illustrated in Fig. 3.56, an examination of materials is

also possible by applying a definite strain function and measuring the resulting

stress in time dependence [s(t)] (isometric tension). In this case the Maxwell

element shows an exponential decline of stress as a result of viscous elongation

of the dashpot relaxing the spring.

The schematic graphs of Fig. 3.56 with their different combined mechanical

elements are similar to the electrical RC circuits in Figs. 3.39 and 3.43. In fact there

are some similarities in their kinetic treatment. In analogy to the electrical imped-

ance which we discussed in Sect. 3.5.3, a kind of mechanical impedance can be

formulated as the response of a viscoelastic system to time-varying mechanical

forces. Measurements of this kind give information on basic mechanical properties

of biological tissue.

The modulus of elasticity (Y in Eq. 3.226) of various materials differs in several

degrees of magnitude. In contrast to the value for steel, which is about 2·105 MPa,

there are only some tenth to hundreds of MPa for various kinds of rubber. This

marks also the range for different elastic properties of biological materials. Resilin,

the most elastic animal protein from locust tendons shows a Young’s modulus even

Fig. 3.56 Mechanical

models to demonstrate the

kinetics of elongation [De(t)]
of elastic, viscous, and

viscoelastic elements after

applying a rectangular

function of force [F(t)](—)
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below one MPa. For bone, values of several hundreds of MPa are determined.

Wood, stressed along the grain arrives at an elasticity of up to 104 MPa.

For the molecular basis of deformations, two mechanisms must be considered: In

the case of steel elasticity, which occurs in most crystalline materials, the elonga-

tion leads to changes of the atomic spacings in the crystal lattice. The atoms are

forced to move from their equilibrium position of minimal internal energy to a

higher energy level. The free energy that is stored up in the strained state is released

during relaxation. This is the reason for the high elasticity modules and also for the

only short amount of elastic strain of these materials near to the rupture point.

In the case of so-called rubber elasticity, which is typical for macromolecular

materials, the deformation of the body is the result of molecular deformations. We

discussed this type of elasticity in Sect. 2.1.6 (Fig. 2.11). The applied strain leads to

a partial deconvolution and orientation of the molecules and as a result, to a

reduction of their entropy. The subsequent relaxation is the result of the increase

in entropy back to its maximum according to the second law of thermodynamics.

This is the reason why this type of stretching mechanism is also called entropy
elasticity. The characteristic differences to steel elasticity are the large amount of

possible elongation, and the strong temperature dependence of rubber elastic

materials.

A number of structure proteins like for example collagen, elastin, or resilin are

responsible for the rubber elastic properties of tendons and ligaments. These

substances also play an important role in the storage of mechanical energy in

some periodic or suddenly occurring movements. Although these processes also

occur in mammals, they are best investigated in insect jumping and flying. In the

case of locust jumping for example, the muscles apply a tension to a system of

tendons which takes up the energy and subsequently releases it, by means of a

trigger mechanism to achieve an increase in power. In this way a power, i.e., a

transformed energy per time can be generated, which is impossible to obtain

directly from the muscle. In fact, this is the same mechanism that we use for

archery. To carry out a jump, a grasshopper for example, needs a specific power

of about 5 kW per kg muscle. This would exceed the maximal output of a muscle by

ten times. Similarly, during flight a grasshopper stores about 20–30% of the energy

of the oscillating movements of the wings using passive elastic elements.

The following characteristics of the viscoelastic behavior of biological systems,

such as cells, tissues, and organs should be noted:

The occurrence of different regions of elasticity in the stress–strain diagram:
Frequently cells and elastic fibers in a tissue are interconnected to each other

forming a network. In this case the viscoelastic properties of this system result

not only in the intrinsic properties of these fibers, but first of all in the construction

of this network, and in the viscosity of the fluid within it. Such a network can be

stretched easily as long as it is deformable as a whole. This is the first region in the

stress–strain diagram with low Young’s modulus. If the components of the network

eventually are fully oriented by the applied stress, a further strain is possible only by

stretching the fibers themselves. This means that the Young’s modulus increases

suddenly. The resulting stress–strain diagram therefore, does not indicate a
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flattening of the curve as in Fig. 3.55, but on the contrary it becomes steeper at a

certain degree of strain. This sort of behavior for example, occurs in the walls of

blood vessels, where the situation becomes even more complicated due to the

activity of the smooth muscles.

The regulation of the elasticity behavior: The viscoelastic properties of the

network as described above can be controlled by biological processes. This for

example is possible by loosening and fastening the points of connections between

the components. The result would be a sort of viscous prolongation of the body.

Another way to control the viscoelastic behavior is the alteration of the water

content of the tissue. Changing the cell volume or the intercellular space in the

network would change its elasticity modulus. This sort of control is best

investigated for the case of viscoelastic properties of the uterine cervix at various

periods of pregnancy.

Mechanical anisotropy: In many biological systems the elasticity modulus

depends on the orientation of the applied stress. This property is best investigated

in bones. Depending on the angle of measurement, Young’s modulus in bones can

vary by a factor of two. The reason for this is the particular structure of the bone.

The struts of the cancellous bone, the so-called trabeculae are oriented according to
its loading in vivo. They are oriented according to the trajectories of pressure and

tension of the bone in the skeleton. This is the result of self-orientation and

adaption, which was first investigated in 1892 by the German anatomist Julius

Wolff formulating the law of bone remodeling (Gesetz der Transformation der
Knochen).

The special mechanical properties of the cell membrane have been discussed in

detail in Sect. 2.3.4 (Fig. 2.40). A lipid membrane can be considered as a two-

dimensional crystal. The head groups of the phospholipids show similar behavior to

the atoms in the three-dimensional crystal of steel. Therefore, they are showing a

kind of steel elastic behavior in the plane. The elasticity modulus of these

membranes is high and their limit of rupture low. The membrane proteins with

their rubber elastic properties have no significant influence on this behavior.

In contrast to technical materials like rubber sheets, the biological membrane can

easily be deformed in an isoplanar fashion, but cannot resist expansion. This

property is important for the dynamics of cell shape and for cell swelling. So for

example swelling of human erythrocytes can easily occur only by deformation up to

the volume of a perfect sphere. The swelling of lymphocytes or other cells is

possible thanks to smoothing of the membrane.

Further Reading

Viscoelasticity in general: Hosford 2009, viscoelastic properties of biomaterials:

Oomens 2009, Skalak and Chien 1987, the historical paper: Wolff 1986.
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3.6.4 The Biomechanics of the Human Body

Investigations of biomechanical conditions of the human body, its movement, its

carriage under conditions of loading, etc. are important tasks in orthopedics,

surgery, sports, and occupational safety. What kinds of loads of the muscles and

joints result from a particular loading and a particular movement? How can

pathologic deviations be cured by surgical operations? How can diseased bones

and joints be replaced by artificial materials? In this case immunological tolerance

must be realized as well as the adaption of the applied material to the viscoelastic

properties of the living bone the artificial joints will be connected to.

Recently, greater effort has been directed toward the construction of mathemati-

cal models of the locomotor system including human walking movements. With

computer simulation programs, hopefully surgical corrections can be performed

with optimal success. Of course, in this context sports efforts should also be

mentioned which optimize various techniques of jumping, running, etc.

In contrast to the structure of plants which can be modeled statically by systems

of flectionally and torsionally loaded bonded structures, for animals and human

systems dynamic body models are required. They are composed of combinations of

elements that are stable towards pressure and bending with tendons and muscles as

elements of tensile stability and contraction. This is illustrated in Fig. 3.57. The

head of the horse for example, is held by a system of elastin tendons, the

Fig. 3.57 Stabilization of the human forearm (a) and thigh (b), as well as the head of a horse (c)

by the combination of bending and compressing stable bones, and tensioning stable muscles and

tendons (After Glaser 1989)
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ligamentum nuchae, as the tensile element and the cervical part of the spinal

column as the component in compression. In the abdominal region of quadrupeds

the compression element is located dorsally and the tension element is located

ventrally. The carriage of the body is stabilized by tendons and it is maintained in an

upright position without an additional supply of energy.

During evolution, the systems of combined elements which are stable against

compression, together with those for tension, have been developed toward optimal

use of muscle force, as well as toward maximal stability of the supporting bones.

The attachment point of the muscles and tendons determines the vectors of tension

and compression in the bone. We already mentioned in the previous section that this

induces the oriented growth of the struts in the cancellous bone (Wolff’s law).

Figure 3.58 shows an example of optimization of the shape of a human forearm.

The bending of the bone and the shift of the muscle attachment have led to a

significant reduction of the bending force. Similar principles of optimization can

also be found in other parts of the muscle-skeleton apparatus.

The bending or the torque of a body can be attributed to stretching and compres-

sion of the material. As a measure of the bending, the radius of bending (R), or its
reciprocal, the curvature of bending (K ¼ 1/R) is used. If a homogeneous beam or

bar bends, a compression of the concave side and a stretching of the convex side

occurs. Between these two regions there must be a neutral plane that is neither

compressed nor stretched.

Let us consider a section of a bar that is bent between two points that subtend an

angle a at the center of curvature (Fig. 3.59). Let R be the radius of the curvature

Fig. 3.58 Two steps for the optimization of the bending load of the forearm. The two muscles

which held the forearm bone must generate forces of 60.8 N and 49.15 N, respectively, to

compensate the loading force of 10.8 N at its end. These muscle forces are identical in both

cases. The bending force of the bone, expressed by the graphs below, however, are quite different.

Compare this scheme with the real situation in Fig. 3.57a (Redrawn after Pauwels 1980)
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measured to the neutral plane. If the angle is expressed in radiants then the length

[l(x)] of the section at the distance (x) from the neutral plane is:

lðxÞ ¼ a Ri ¼ aðRþ xÞ (3.227)

If the length of the section along the neutral plane (at: xn ¼ 0; Rn ¼ R) is ln then
the strain (e) of any plane, parallel to the neutral plane can be calculated by

Eq. 3.225:

eðxÞ ¼ Dl
l
¼ lðxÞ � ln

ln
¼ aR1 � aR

aR
¼ x

R
(3.228)

As the distance x is measured from the neutral plane, e can have both positive

and negative values. Negative strain in this context means compression of the

material and occurs when x < 0.

The combination of Hooke’s law (Eq. 3.226) and the above relation enables the

stress to be calculated:

sðxÞ ¼ Y
x

R
(3.229)

The differential of moment of force (dM) is used to find the force which is

necessary to bend the bar. It is calculated from the product of the force (F) and the

leverage distance from the neutral plane (x), and it is also related to the differential

of an area (dA):

dM ¼ x dF ¼ x s dA ¼ x2Y
R dA (3.230)

The bending moment of the bar is obtained by integration of this equation. If the

bar is homogeneous, the modulus of elasticity (Y) is not a function of x.

M ¼ Y

R

ð
x2 dA ¼ Y

R
IA (3.231)

Fig. 3.59 The bending of a bar
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In this equation the integral expression has been replaced by the area moment
of inertia (IA). This is a measure of the bending resistance of a bar made out of a

material having a modulus of elasticity (Y). It can be seen that for a given bending
moment, the smaller the value of IA the more the bar bends. This means that if the

bending moment does not change, and the modulus of elasticity remains con-

stant, then the second moment of area is directly proportional to the radius of

curvature.

It is easily understood from everyday experience that the area moment of inertia

of a bar depends on the plane in which it is bent. A bar having a flat section bends

more easily across the flat then it does on edge. This is determined by the position of

the neutral plane. It passes through the center of gravity of a cross-section of the bar,

and is always perpendicular to the radius of curvature.

For bars with particular geometrical profiles analytical expressions for IA are

derived. Comparing these values for a compact cylindrical rod with a radius r, with
that of a tube with an inner radius r1, and an outer radius r2, the advantage of a

structure made up of hollow tubes, is evident (Fig. 3.60). This optimizing principle

has occurred in the construction of bones and some plant stems.

In the case of geometrically nondefinable structures the area moment of inertia

can be determined by iterative methods. First it is necessary to find the position of

the neutral plane. This is perpendicular to the bending radius and located at the

center of gravity of the profile. For structures of homogeneous density the center of

gravity can easily be found using a cardboard model of the cross-section. The center

of gravity is the crossover point of all lines which can be drawn in a vertical

direction from various points of suspension (Fig. 3.61).

After the position of the neutral plane has been fixed, the cross-section can be

subdivided into rectangular areas (Fig. 3.62). The following approximation can be

obtained from the definition of the second moment of area:

IA �
Xn
1¼1

x2i DAi (3.232)

The individual rectangular areas (DAi) are calculated, the distance of their

centers from the neutral plane (xi) are measured, and the products of these two

Fig. 3.60 Area moment of

inertia (IA) and polar moment

of inertia (IP) for a solid shaft

and a tube
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measurements are summed as required by Eq. 3.232. The accuracy of this method

will be increased if the areas are made as small as possible. The units of the second

moment of area are m4.

In a similar way to bending, the torsional deformation can be calculated. In this

case not a neutral plane exists between the stretched and the compressed areas, but

all regions are stressed as much as they are away from a central axis of gravity.

A polar moment of inertia (IP) can be formulated where the area elements (dA) are
multiplied by the square of the radial distance (r) from the center of gravity, and

subsequently, the products are summed. In an integral formulation this means:

IP ¼
ð
r2 dA (3.233)

In this way the polar moment of inertia of bars and tubes of definite geometrical

profile can be calculated (Fig. 3.60).

These statements form the basis for calculating the stability of structural

elements of plants, animals, and humans. However, it can be seen from the above

equations that some simplifying assumptions have to be made. In particular it must

be noted that the modulus of elasticity (Y) may vary with the position and also, as

Fig. 3.61 Determination of the center of gravity of a tube of arbitrary cross-section as the

crossover point of perpendicular lines drawn from the points of suspension

Fig. 3.62 Determination of the second moment of area of a tubular bone by a graphical method.

The profile of the bone is approximated by many rectangles with individual areas Ai and distances

from the neutral plane (– �– �– �–) xi; X – center of gravity
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illustrated by the properties of bone, with the direction of the applied force. If the

viscoelastic properties are also taken into account, the calculations become even

more complicated.

Further Reading

Biostatics of humans and animals: Fung 1993; Skalak and Chien 1987; biostatics of

plants: Niklas 1992; Bone modeling: Carter and Beaupré 2001; Martı́nez-Reina

et al. 2009.

3.7 Biomechanics of Fluid Behavior

Streaming of viscous fluids occurs at all levels of biological structure. There is

water flow through pores of membranes, streaming of cytoplasm in plants, stream-

ing of blood in the vessels, and finally flow of water and air around animals, i.e. the

problems of flying and swimming. In this section we will concentrate on some

medically important problems of hemodynamics, or hemorheology. But as this is a

classical problem of biomechanics, some basic aspects of flying and swimming will

be included.

3.7.1 Laminar and Turbulent Flows

When a liquid flows along the surface of a thin plate, a flow profile is formed over

this boundary which changes its character as the distance (l) from the leading edge

of the plate (at: l ¼ 0) increases. This effect is illustrated in Fig. 3.63.

Directly near the surface of the plate there is a trapped layer, i.e., a fixed,

nonmoving film of air or liquid (not marked in Fig. 3.63). At increasing distance

from the plate (z), the velocity of the flow increases. Near the edge of the plate, up to

a particular critical length (l) there is a region of laminar flow, where fluid layers

(lat.: lamina) slide over one another in a parallel direction. This boundary layer is

characterized by a velocity gradient (dv/dz 6¼ 0) perpendicular to the surface of the

plate (see Fig. 3.64). There is no sharp transition between this layer and the region

of unaffected bulk flow (dv/dz ¼ 0, v ¼ v1). Usually the thickness of this laminar

boundary layer is defined by the distance z ¼ dL, when v ¼ 0.99v1. As can be seen

in Figs. 3.63, and 3.64, dL gets larger as the distance from the leading edge of the

plate increases.

The region of laminar flow in relation to the distance from the edge of the plate

decreases at increasing bulk velocity (v1). With increasing distance (l) from the

edge, the boundary layer gets thicker and becomes increasingly unstable. At a

critical point, this leads to spontaneous appearance of turbulences. As already

explained (Sect. 3.1.3, Fig. 3.3) turbulent flow occurs if the streaming processes

becomes nonlinear, i.e., if the linear flux-force relation (Eq. 3.49) is no longer
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applicable. The transition from laminar to turbulent flow therefore is accompanied

by an increase in friction and a substantial increase in the thickness of the boundary

layer (dL < dT). The resulting whirls can be considered as a kind of dissipative

structure.

In Table 3.2 some basic equations are listed to calculate parameters of laminar

and turbulent flow. Partly, these equations are based on empirical observations,

particularly those for turbulent flow.

It is not possible to determine exactly the critical point at which the transition

from laminar to turbulent flow takes place. In fact, this is a stochastic process of

Fig. 3.63 Formation of laminar and turbulent flow profiles near a planar plate. As an example, the

numbers correspond to a flowof air (n ¼ 1.5 · 10�5m2 s�1)with a velocityv1 ¼ 5ms�1. The thickness

of the laminar (dL) and the turbulent boundary layer (dT) are calculated according to the equations in

Table 3.2

Fig. 3.64 Laminar velocity

profile near a surface. The

velocity vectors are depicted

at various distances (z) from
the surface; at z ¼ 0, v ¼ 0;

dL is the thickness of the
laminar boundary layer
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state transition of the system that occurs as the result of increasing destabilization.

The position of the critical point where the laminar flow abruptly transforms into a

turbulent one can only be calculated as a matter of probability. It depends on the

flow velocity (v), the viscosity (�), the density of the medium (r), and a character-

istic streaming distance (l). These parameters are connected in the so-called

Reynolds number (Re) which plays a crucial role in rheology:

Re ¼ l v r
�

¼ l v

n
(3.234)

In this equation the kinematic viscosity (n ¼ �/r) is used which has already been
introduced in Sect. 3.6.1.

The Reynolds number is a typical parameter of the theory of similarity. Bodies

of identical shape show identical flow behavior, for flow conditions with the same

Reynolds number. This is independent of whether the body is large or small, or

whether it is moving in water or air.

The critical Reynolds number characterizing the transition from laminar to

turbulent streaming of a flow parallel to a flat surface, as illustrated in Fig. 3.63,

is about Re ¼ 106. For a sphere with a flow around it, this transition already occurs

at Re � 103 (see Fig. 3.3). The critical Reynolds numbers of streamlined bodies

with so-called laminar profiles are somewhere between these limits, depending on

their exact shape.

Flow inside a cylindrical tube can be characterized in a similar way. In this case

in Eq. 3.234 the radius of the tube is taken for the characteristic length l. The critical
value of the Reynolds number for a flow in a tube is about 103. Turbulent flow

means that the entire flow has become destabilized.

The following values for the kinematic viscosity can be used to calculate the

Reynolds number for T ¼ 291 K:

nWater ¼ 1:06 � 10�6m2s�1

nAir ¼ 14:9 � 10�6m2s�1

Table 3.2 Equations for parameters of laminar and turbulent flow near boundaries. Symbols (see

also Fig. 3.63): v – velocity, z – distance from the boundary, r – density of the medium,

� – viscosity, Re – Reynolds number; subscripts: 0 – at the boundary, 1 – in the bulk phase

Laminar flow (subscript L) Turbulent flow (subscript T)

Sheer stress t (z) t0(1–z/dL)
t0 0; 332 r v21ðReLÞ�1=2

0; 023 r v21ðReTÞ�1=5

Velocity v(z) 2 v1/dL(z–z
2/2dL) v1(z/dT)

1/7

Thickness d 5 lL(ReL)
�1/2 0,376 lT(ReT)

�1/5

Force of surface friction F0(l) 0; 664 r v 2l
1LðReLÞ�1=2

0; 0366 r v 2l
1 TðReTÞ�1=5
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If these values are substituted into Eq. 3.234 it is seen that, in contrast to

streaming air, as shown in Fig. 3.63, turbulence in the case of water would occur

not at l ¼ 3 m, but already at l ¼ 0.2 m from the leading edge. A comparison of

flying and swimming objects can only be made under conditions of equal Reynolds

numbers. It is quite senseless simply to relate velocities to the length of an object

(which unhappily is often done in popular scientific publications, much to the

amazement of the readers!).

Table 3.3 shows some typical Reynolds numbers for the movement of quite

different organisms. In Sect. 3.7.3 we will show that, although they may possibly

have optimal laminar flow shapes, large, fast-swimming fishes and aquatic animals

exceed the critical Reynolds number for laminar flow.

3.7.2 Biomechanics of Blood Circulation

The biophysical properties of blood flow are quite complicated, even if all the

complex physiological and biochemical control mechanisms are at first neglected.

There are at least two features in which blood flow in general differs from

the movement of a normal fluid through a tube, even having non-Newtonian

properties. On the one hand, the elasticity of the blood vessels must be considered,

changing their diameter as a function of the internal pressure, and on the other, it

must be taken into account that blood is a suspension of flexible cells, the mean

diameter of which may be of the same order as the smallest capillaries through

which they must flow. The viscosity of the blood is a function of the cell

concentration, the so-called hematocrit, which itself appears to be a function of

the shear conditions in the vessel (see also Sect. 3.6.2). Furthermore, the pulsed

character of blood flow must be considered and the particular aspects of

bifurcations of the vessels.

Let us first consider some basic equations of fluid mechanics. Laminar flow

through a tube may be thought of as the mutual movement of concentric hollow

Table 3.3 Characteristic Reynolds numbers of various moving organisms

Characteristic

length (l) m
Characteristic

velocity (v) (m.s�1)

Reynolds

number (Re)

Paramecium caudatum 2.1 · 10�4 1.1 · 10�3 1.8 · 10�1

Mosquito

(Ceratopogonidea)
0.9 · 10�2 2.5 · 10�1 1.5 · 102

Chaffinch 3.6 · 10�2 2.1 · 101 5.4 · 104

Crane 2.6 · 10�1 2.8 · 101 5.0 · 105

Water bug (Dytiscus) 3.0 · 10�2 3.0 · 10�1 8.4 · 103

Stickleback (marine) 1.0 · 10�1 7.2 · 10�1 5.5 · 104

Shark 1.5 · 100 5.2 · 100 6.1 · 106

Dolphin (Stenella spec.) 2.1 · 100 9.3 · 100 1.5 · 107

Blue whale 3.3 · 101 1.0 · 101 2.6 · 108
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cylinders. In this case each of these cylinders with a radius r, and a thickness dr
experience a frictional force (FF) which is proportional to the velocity gradient

(dv/dr), to their surface area (2prl), and to the viscosity of the fluid (�).

FF ¼ 2 p r l �
dv

dr
(3.235)

The driving force (FD) behind such a flow can be obtained from the pressure

difference (Dp) and the cross-sectional area of the cylinder (pr2):

FD ¼ p r2 Dp (3.236)

In the case of stationary movement, both forces are balanced: FF ¼ FD. Let the

radius of the tube be r0, and let us assume that there is a trapped boundary layer of

liquid [v(r0) ¼ 0] at the inner surface of the tube. Connecting Eqs. 3.235 and 3.236,

and integrating them according to dv one obtains an equation for the velocity profile

of this flow:

vðrÞ ¼ Dp
4 l �

ðr02 � r2Þ (3.237)

Thus, v(r) is a parabolic function, whereas vmax is the velocity at the center of the

tube (see Figs. 3.51, and 3.66). In order to calculate the total volume flux (JV in:

m3 s�1) through the tube, the function v(r) must be integrated over the entire profile.

This leads finally to the Hagen–Poiseuille equation:

Jv ¼ p Dp r04

8 l �
(3.238)

Thus, the flow through a tube is proportional to the fourth power of its radius.

This is a very important aspect for the physiological control of local circulation.

A slight widening or narrowing of the blood vessels causes large changes in the

blood flow.

These fundamental laws of physical rheology must be considered just as a first

approximation for what really happens in blood flow through the vessels. The

following particularities must be taken into account, leading to an extension of

these approaches:

– Blood is a non-Newtonian fluid, i.e., its viscosity (�) depends on the shear rate (g)
of the flow (see Sect. 3.6.2, Fig. 3.54). Integrating Eq. 3.235 in order to derive

Eq. 3.237, we considered the viscosity as constant. This, obviously, is not

acceptable in the case of blood. If, however, a particular function �(g) was

applied, the integration would be more complicated, and the resulting velocity

profile would not show a simple parabolic function.
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– Blood is not a homogeneous liquid, but a suspension of cells. In capillaries, the

diameters of which are of the same order of magnitude or even lower than

the diameter of erythrocytes, the velocity profile of the plasma is determined by

the moving cells which become strongly deformed in these narrow and branched

vessels. This is a problem of microrheology of circulation (see Fig. 3.65). This

particular streaming profile, especially the microscopic vortices in fact optimize

gas exchange between tissue and erythrocytes.

In large vessels the so-called Fahraeus–Lindqvist effect occurs. This leads the
erythrocytes to concentrate in regions of minimal shear stress, namely in the

center of the vessel. This means that the viscosity of the blood which we found to

depend on the hematocrit (Sect. 3.6.1) increases in this region, but decreases

near the wall of the vessel. This leads to a lowering of the streaming resistance of

the total blood flow. Conversely of course, the streaming profile is changed

dramatically. The parabola becomes flattened at the center of the vessel and

steeper near the walls. Furthermore, this effect leads to a redistribution of

different sorts of blood cells. In fact, the intensity of the force, shifting the

cells by the Fahraeus–Lindqvist effect into regions of lower shear stress, depends

on their size. As a result smaller cells like blood platelets are not influenced as

much by this effect as erythrocytes with a larger diameter. This leads to

concentration of the platelets near the walls of the vessel, which appears to be

helpful in the case of injury.

The Fahraeus–Lindqvist effect can be understood as the result of the

Prigogine principle of minimal entropy production, as described in Sect. 3.1.4.

It is valid for linear approaches, thus also for laminar flow (see Sect. 3.6.1).

Minimal entropy production, for the case of blood flow means that the cells

should concentrate at locations of minimal frictional energy dissipation, namely

at locations of minimal shear rate.

– The diameter of the blood vessels differs along the system of circulation. If a
tube suddenly becomes narrow a so-called entrance effect occurs (Fig. 3.66).
This means that first the velocity profile of the narrow part of the tube

corresponds to that of the central part of the broad tube. Only after a certain

Fig. 3.65 Movement of deformed erythrocytes through a narrow capillary. The plasma, trapped in

vortices between the cells is transported in the same direction together with them. Near the wall of

the capillary plasma may move in the opposite direction (Modified after Talbot and Berger 1974)
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distance from the place of narrowing (lE in Fig. 3.60), will a new profile be

established. Usually this occurs at: lE ¼ 0.06 · r· Re, where r is the radius of the
narrow tube, and Re is the Reynolds number. This effect becomes important at

the entrance of blood in the aorta. Furthermore, it occurs in the case of air flow

in the lungs.

– Blood flow is not stationary, but pulsed. Therefore, the condition FF ¼ FD is no

longer valid (see Eqs. 3.235 and 3.236). This fact is only important for arterial

flow. The pulse waves of the heart partly become damped by the elasticity of the

walls of the vessels, but they nevertheless proceed as oscillations of pressure and

velocity of the blood flow up to the arterioles. One must differentiate between

the true velocity of the blood streaming (v) on one hand, and the velocity of pulse

propagation (vP) on the other. The pulse propagation can be calculated using the

Moens–Korteweg equation, which is derived for cylindrical tubes with thin

walls:

vp ¼
ffiffiffiffiffiffiffiffiffi
Y d

2r r

s
(3.239)

In contrast to the flow rate (v) (Eq. 3.237), the pulse propagation rate (vP)

depends on the density (r) of the medium, but not on the viscosity (�). Conversely,
the thickness (d), and the elasticity modulus (Y) of the wall of the vessels are

included. This equation does not say anything about the damping of pulse waves.

To relate various pulsing flows, similar to the Reynolds number, another param-

eter of similarity (a) is introduced:

a ¼ r

ffiffiffiffiffiffiffi
or
�

r
(3.240)

In this equation beside the density (r) and the viscosity (�), additionally the

pulse frequency (o) is used. This parameter a allows us to evaluate the relation

between vp and v under various streaming conditions. For small values of a the

pulse propagation is faster than the velocity of the blood stream. At a � 3, the pulse

Fig. 3.66 Laminar flow in a tube: the parabolic velocity profile changes during a sudden

narrowing of the tube’s radius (entrance effect). Only at a distance lE is a new parabolic profile

established again
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propagation velocity becomes equal to the streaming velocity (vP ¼ v). In the aorta

this parameter is higher than that limit (a ¼ 15). In the arteria femoralis this limit is

reached (a ¼ 3). In these vessels therefore the pulses are propagated with the same

velocity as the total flow rate of the blood. This consideration, however, does not

include the fact that at points of branching of the vessels, reflections of the waves

can occur.

To evaluate the elasticity of the blood vessels, let us start again with simple

physical approaches. How is the radius of a tube changed by the strain of the tube

wall? For the simplest case, Hooke’s law (Eq. 3.226) can be applied, considering an

elastic tube with a radius r, and a circumference of 2pr. In this case the stress (s) of
the wall of the tube can be written as follows:

s ¼ Y
Dr
r

(3.241)

We defined the stress (s) as stretching force (F) per area (A) of the stretched

material (Eq. 3.224). Let the thickness of the wall be d, and its length l, the cross-
sectional area of the stretched wall becomes A ¼ d·l. Therefore:

s ¼ F

ld
(3.242)

Defining s0 as stretching force per length, gives:

s0 ¼ F

l
¼ s d (3.243)

Now, we must know how large the stress (s) would be in the wall of a tube with
an internal pressure p. This can be calculated using the Laplace equation for a tube

with radius r:

s0 ¼ p r (3.244)

Equations 3.241–3.244 enable us to derive a formula to calculate the increase of

the radius of a tube (Dr) as a function of the internal pressure (p):

Dr ¼ pr2

Y d
(3.245)

Let us remember that we started with the assumption that the vessel wall shows a

linear elastic behavior of the material according to Hooke’s law. The relation

between stress and strain therefore would correspond to Young’s modulus

(Eqs. 3.226 and 3.241). In fact the viscoelastic behavior of the wall of vessels is

much more complicated and not at all linear. Furthermore, its strain is not only

controlled by an interplay between various elastic materials, but is additionally
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regulated actively by smooth muscles. This interaction of passive and active

properties of the vessel wall is of great importance for the regulation of blood flow.

All these calculations consider the blood flow in the system of circulation as

laminar. Is this correct or are there turbulences in human blood flow? The numbers

of Table 3.4 indicate that in fact, at least in large arteries critical Reynolds numbers

can occur. We mentioned in Sect. 3.7.1 that the laminar flow in tubes becomes

unstable in the case of Reynolds numbers near 1,000. This limit, however, is only

correct for smooth, rigid and absolutely cylindrical tubes. In blood vessels, some

factors help to stabilize the laminarity even beyond this limit, while others induce

turbulent flow already at lower Reynolds numbers. Factors inducing turbulences are

for example the branching of the vessels and inhomogeneities of their walls. These

include arteriosclerotic alterations, or consequences of various surgical operations.

In general, however, the system of blood circulation can be considered as biome-

chanically optimized.

Various techniques have been applied to investigate the properties of streaming

blood. In medical diagnosis various ultrasound techniques are used to analyze flow

properties of blood as well as viscoelastic properties of the vessels. Especially, the

Doppler effect of ultrasound allows us to investigate blood flow, and even the flow

profiles in large vessels. Special computer programs help to visualize these pro-

cesses. This also allows us to check the blood flow and functions of the heart valves.

Furthermore, investigations are undertaken analytically in tubes made of transpar-

ent materials which copy particular regions of human vessels (Fig. 3.67).

The model system of Fig. 3.67 shows special properties of flow behavior near the

branching of vessels. The critical Reynolds numbers in these regions are lower than

in unbranched regions. This depends on the angle of bifurcation (a in Fig. 3.67). For
a ¼ 180� the laminar flow already becomes critical at Re ¼ 350. If the angle is

only 165�, the critical point is at Re ¼ 1,500. Additionally, the critical Reynolds

number depends on the relation of the radius of these branches.

These few aspects of biophysics of blood rheology already show us how compli-

cated this situation in vivo in fact is. This branch of biomechanics is developing

quickly. This tendency is promoted by the fast progress in surgery of blood vessels

on the one hand, and on the construction of artificial cardiac valves, of artificial

hearts as well as of various systems of extra-corporal circulation on the other.

Table 3.4 Some rheological parameters of human blood circulation (Data from Talbot and Berger

1974)

Vessel Average velocity

m (s�1)

Diameter (m) Average wall

shear rate (s�1)

Reynolds

number (Re)

Aorta 4.8 · 10�1 2.5 · 10�2 155 3.4 · 103

Artery 4.5 · 10�1 4 · 10�3 900 5 · 102

Arteriole 5 · 10�2 5 · 10�5 8,000 7 · 10�1

Capillary 1 · 10�3 8 · 10�6 1,000 2 · 10�3

Venule 2 · 10�3 2 · 10�5 800 1 · 10�2

Vein 1 · 10�1 5 · 10�3 160 1.4 · 103

Vena cava 3.8 · 10�1 3 · 10�2 100 3.3 · 103
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Further Reading

Bejan and Lorente 2008; Fung 1984, 1993, Skalak 1987, Waite and Fine 2007.

3.7.3 Swimming and Flying

The Reynolds number enables us to relate flow properties of moving objects in

water with those of air. This allows us to relate the mechanisms of swimming to that

of flying.

When a body moves relative to its surrounding medium then a surface friction,
or skin friction occurs, and furthermore a drag on the surface of the body which is

caused by its shape, the so-called profile, or form drag. The surface friction arises

from phenomena which occur in the boundary layer and which have already been

discussed in Sect. 3.7.1. Conversely, form drag arises because of the form (shape)

of the object and is related to the volume of the surrounding medium that is

displaced by the moving body. Objects with a larger cross-section perpendicular

to their direction of movement will have a higher drag than thinner bodies.

Regions around the body therefore can become influenced to a much larger

extent than those at the boundary layer in a fluid flowing parallel to a flat plate

(Fig. 3.63). The critical Reynolds number, indicating that the laminar boundary

layer becomes destabilized, therefore, is determined, to a great extent by the shape

of the body. This explains why these two components of drag generation, namely

the surface friction on the one hand, and the form drag on the other, cannot be

treated separately from one another.

The boundary layer around a moving body is to a great extent influenced by local

pressure differences. This arises from differences of the velocity (v) at different

locations. Because of the law of conservation of energy, the sum of kinetic energy

Fig. 3.67 Velocity profile in a model of the human carotis with 70% flow through the Arteria

carotis interna. a – angle of bifurcation (After Schneck 1980 modified)
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of the moving medium (½rv2V), and the static energy of compression (pV) must be

constant at all points of the space:

pþ 1

2
r v2 ¼ const (3.246)

This constant is determined by the following conditions: at v ¼ 0 the hydrostatic

pressure must be: p ¼ p0, whereas p0 is the static pressure of the environment. This

leads to the Bernoulli equation:

p ¼ p0 � 1

2
r v2 (3.247)

The local pressure (p) acting on the surface of a body which moves in relation to

a fluid, therefore results from the hydrostatic pressure (p0) of the environment,

lowered by the parameter ½rv2. In addition to this pressure, however, an impact

pressure must be considered affecting the points where the velocity vector of the

streaming fluid is perpendicular to the body surface.

Figure 3.68 indicates the flow profile and the pressure distribution around a

streamlined body, i.e., a body with minimal form drag. At points where the velocity

of the flow is greatest, which in the diagram is indicated by maximal density of the

lines of flow, i.e., near the middle of the body, there will be a maximum of negative

pressure. At both ends the form drags dominate. These local pressures lead to forces

which are directed always perpendicular to the surface of the body. At locations

where this pressure becomes negative, i.e., at points where the forces are directed

away from the surface, a disruption of the flow from the surface of the body can

occur. This results in a wake of large eddies that is a region of turbulent flow which

occupies a space much larger than that corresponding to the thickness of the

turbulent boundary layers given in Fig. 3.63 and Table 3.2.

Considering this situation, there are three discrete qualities of flow pattern,

obtained by increasing velocities or better, increasing Reynolds numbers:

Fig. 3.68 Flow profile and pressure distribution around a moving streamlined body (Redrawn

after Hertel 1963)
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– Laminar flow around the body,

– Turbulent flow in a boundary layer,

– Turbulent, disrupted flow forming a wake.

The resistance to streaming around the body in these situations always increases

stepwise.

In Table 3.3 Reynolds numbers are indicated for some swimming animals. The

small animals, in spite of having unfavorable shapes, are in the region where the

flow is always laminar, but for animals where the Reynolds number is in the order

of 100 and higher, a hydrodynamic optimization of the shape of the body is

required. In contrast to the sphere which allows laminar flow up to Re � 1,000,

the critical Reynolds number for a streamlined body, of course, is higher. The body

shape of fast swimming animals really does appear to be optimal in this respect.

Nevertheless, the Reynolds numbers of fast swimming fishes and dolphins, and also

of many birds, lie in the supercritical range. In such cases various adaptions can be

found that, at least, impede the disruption of the turbulent flow. This, for example, is

achieved by the early induction of microturbulences at the surface of the body by

particular surface structures such as feathers or scales.

Much has been written in papers on bionics about the specific adaptations of the

dolphin which enable it to swim extremely fast. Apparently there is a viscoelastic

damping layer of the skin and furthermore, the ability to induce folds at the body

surface by muscular activity, both of which prevent the occurrence of latent

instabilities in the flow.

The real friction of a swimming fish is difficult to measure. The simplest way

would be to pull dead or anesthetized fish at a given velocity through water. The

frictional resistance, obtained in this way, however, is so high that it would be

impossible for the musculature of an actively swimming animal to overcome them.

This leads to the conclusion: the fish is unable to swim! This circumstance was

postulated in 1936 by Sir James Gray, and calculated particularly for the case of

dolphins. The solution of Gray’s paradox is as follows: In contrast to technical

constructions, for example vessels containing two distinct elements, the driving

component (screw), and the frictional component (body), in the case of living fishes

or even dolphins, both elements are combined. A fish diminishes its friction during

active swimming. The actively swimming animal has a lower drag than one that is

towed passively through the water.

The part of the body that is involved in propulsion of fishes can be very different.

Depending on the relative length and flexibility of the tail, three main types can be

differentiated. The anguilliform type of movement, for example the eel, involves

the whole body for propulsion. Most fishes show the canrangiform type of propul-
sion (Fig. 3.69). In this case tapering tails of medium length allow fast and

dexterous swimming. They are able to accelerate quickly reaching a high speed

after a short time. In the case of ostraciiform type of movement, named after the

trunk of coffer fish, only the fins, like propellers propagate the fish. These fishes are

only able to swim slowly.
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In contrast to swimming, where we considered mechanisms of drag reduction, in

the biomechanics of flying, lift is of central interest. First, we must distinguish

between passive gliding and active flying. There are not only various insects,

especially butterflies, birds, and mammals that can glide, but also a number of

plant seeds and fruits. Many types of aerodynamic mechanisms are employed by

these vegetable objects ranging from simple adaptations to reduce the rate of

descent by means of rotating wings, for example the propeller seed of the maple

tree, up to the stable gliding flying-wing of the seeds of the climbing pumpkin

species Zanonia macrocarpa.
Active flying by animals is achieved through a most varied assortment of

mechanisms. Those animals which can rise into the air without some initial help

and then move forwards or backwards from this position can be considered as ideal

fliers. This hover flight, however, requires power which dramatically increases with

the wing loading, i.e., with the relation between body weight and wing area.

Figure 3.70 shows that in fact the area of wings in various flying animals does

Fig. 3.69 Carangiform mechanism of propulsion of a fish with the vortex street behind

Fig. 3.70 The area of wings (A, in m2) of various insects and birds as a function of body mass

(m, in kg), follows approximately an allometric equation: A ¼ 0.11 m2/3 (blue line). The red lines
demonstrate the resulting wing loading (in kg·m�2) (Data from Hertel 1963)
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not increase in direct proportion to their body mass, but rather to the power of 2
3
.

This is a common allometric relation which we will discuss in the next section

(Sect. 3.8). The isometric lines (in Fig. 3.70: red lines, all with a power of 1) allow

us to evaluate the real wing loading. The upper limit of the specific muscular

performance is already reached in the case of humming birds. Larger birds and

even large insects, like the stag beetle (see Fig. 3.70) are not able to hover on their

own although some of them, like the kestrel can do so with the help of the wind.

Figure 3.71 shows schematically the wing movement of a hovering humming

bird. The wings move horizontally, and each covers about a third of the horizontal

area around the bird. The angle of attack is continuously adjusted so that lift is

generated as the wing moves forwards, as well as backwards. In contrast to

humming birds, the wings of flies and bees move in a vertical direction. The

wings are also twisted but only the downstroke is used to generate lift. In the case

of birds flying forward, the wings are moved up and down. The angle of attack is

also regulated, but additionally the wings are bent or partly folded on the upstroke.

In contrast to the humming bird, all other birds require some assistance to get off

the ground. Just as an aircraft must reach a take-off speed to ensure that the wings

are generating sufficient lift, so must birds. This is achieved by running, jumping, or

dropping. Nevertheless, the take-off speed of birds is remarkable low. This means

Fig. 3.71 Wing position and

air flow of a hovering

humming bird (Redrawn after

Hertel 1963)
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that maximum lift at minimal Reynolds number is required. Figure 3.72 shows the

force diagram for a wing that is being thrust forwards and downwards. If the

incident flow remains constant (v0) then the lift generated by the wing increases

with the degree of curvature of the wing section as well as with the angle of attack

(a). The amount of increase of both these parameters however, is limited. If they

exceed a critical value, the flow is disrupted, and turbulence develops. This will not

only cause a loss of thrust but will at the same time destabilize the entire system.

Such an occurrence would cause an airplane to crash. There are a number of

biological adaptions preventing such a disaster and at the same time ensuring

maximum lift at low speeds.

Further Reading

Ahlborn 2005; Alexander 2003; Azuma 1992; Leyton 1975; Videler 1993; Vogel

1994; Webb and Weihs 1983.

3.8 Allometric Considerations of Structure and Function

We already touched upon the problem of scaling of various processes in some

earlier sections. So, the Reynolds number (Sects. 3.7.1, 3.7.3), and the a-parameter

(Sect. 3.7.2) enable the mutual compatibility of streaming behavior of structures

with various sizes. In fact, there exists a long list of dimensionless numbers of this

kind which are used in technical engineering, allowing us to scale streaming,

convection, heat conduction, and many other processes. But it is not only in

engineering that it is necessary to compare structures and functions of systems

Fig. 3.72 Air stream and forces of bird flight during a stroke of the wing forwards and downwards

(Redrawn after Hertel 1963)
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with different size, in fact, it is attracting more attention also in regard to various

biological systems.

From the smallest organism to the largest, the size ranges through many orders

of magnitude. Additionally, there are considerable size differences in the individual

development of a single animal, as well as in different animals of the same species.

To relate various biological functions with size, i.e., mass, is not only a general

question of theoretical understanding of biological organization, but in some cases

it is quite important for practical problems in medicine, sports, agriculture, etc.

For many biological variables a relationship can be written in the form of a so-

called allometric function:

y ¼ axb (3.248)

where a is the allometric coefficient and b the allometric exponent. The word

allometric comes from the Greek and means “different measure.” As a matter of

fact, the relation is said to be allometric only if b 6¼ 1. Otherwise the relationship is

linear and it is called not allometric, but isometric.
In general, we find three levels of scaling in biology: scaling relations within an

individual organism during its growth (ontogenetic allometry), scaling relations

among individuals of one species (intraspecific allometry), and finally scaling

relations for individuals of different taxonomic or functional groups (interspecific,
or phylogenetic allometry).

This problem in general involves the question of similarity, which was

formulated already in Euclidean geometry. Archimedes, more than 2,000 years

ago formulated that the surface of bodies with similar shapes grows in proportion to

the square of their size, whereas their volume, correspondingly, with the cube.

Galileo Galilei in the seventeenth century already speculated about the similarities

of animals. He noted that a dog may be able to carry two or even three similar dogs

on his back in contrast to a horse which hardly can do the same. He furthermore

emphasized that the thickness of the bones in animals of different sizes are not

simply proportional to the linear dimensions of their body.

Physiologists have for a long time formulated allometric relationships between

body mass and various structural and functional properties of animals of various

size. In the center of interest is metabolic rate as a function of size. This is an

important parameter because it limits almost all biological processes at different

levels of organization. In aerobic organisms, it is equivalent to oxygen consump-

tion, and can be determined in this way. From a thermodynamic point of view,

neglecting the storage of chemical energy, it must finally result in heat production,

and in fact, it represents the entropy production which is expressed by the dissipa-

tion function F (see Sect. 3.1.4, Eq. 3.64).

In 1883 the German physiologist Max Rubner formulated a surface law of
metabolism. He reasoned: if an animal is n times as big as another, then its surface

(A) should increase by n2 and its volume or mass (m) by n3, provided that the

density (r) of all organisms is more or less the same. The relations A ~ n2 and
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m ~ n3, can be transformed into A ~ m2/3. Rubner considered that the metabolism

of an animal will finally produce heat (dQM/dt). He supported these considerations

with experimental data, derived from measurements of heat production and oxygen

consumption in animals of the gamut of sizes. To keep the temperature of the

organism constant, there must be a steady state, i.e., the heat must continuously be

dissipated from the skin’s surface. This leads to F ~ A, or F ~ m2/3.

To determine these allometric parameters usually a log-log plot of the data is

used. Taking the logarithms of both sides the above-mentioned generalized allome-

tric equation will be transformed into:

log y ¼ log aþ b log x (3.249)

Plotting (log y) against (log x) one obtains a straight line with the slope b. The
parameters a and b therefore are the results of a linear fit to the log-transformed

data.

In contrast to Rubner’s data, another physiologist Max Kleiber in 1932 stressed

that b was larger than Rubner postulated, namely b ¼ 3/4. In this way the discus-

sion in animal physiology about this allometric function (F ¼ a mb) began and

proceeds even today. The following questions arise: what is the real value of the

allometric coefficient a and the allometric exponent b? Are these parameters really

constant for mammals of different size, from the mouse to the elephant, or even in

other animals like reptilians, or birds? Considering the large amount of papers

published in recent years, and the hundreds of measurements on various animals,

some researchers maintain Kleiber’s proposition, while others support the b ¼ 2/3

parameter of Max Rubner.

What may be the reason for this controversy? This should be clarified first,

before further theoretical explanations are helpful. The parameter F, representing

the metabolic rate of an organism, of course varies depending on its physiological

condition. A so-called basal metabolic rate (BMR) is formulated, representing the

minimum power which is required to maintain the tissues and essential life

functions in nontorpid animals. Alternatively, the metabolic rate arrives at a

maximum (MMR) when the animal is running at top speed. This can exceed the

BMR by a factor of ten, and the allometric exponents for MMR data have been

found to increase up to nearly 0.9. In fact, the measured metabolic rate is in any case

between these two extremes and therefore variable. Furthermore, the metabolic rate

strongly depends on the temperature of the environment and the corresponding

adaption. Therefore, the allometric exponent may also depend on geographical

regions and habitats.

In general, all biological variables have a measurement error and therefore

deviate from expected curves. Moreover, it is difficult to standardize the measur-

ing conditions for different animals. In general, the value of the exponent depends

on the conditions under which the data are recorded. Finally, the parameters of

the allometric functions to some extent depend also on the applied fitting

procedure.
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Furthermore, the problem of geometrical and of course functional similarity of

the animals should be considered. How can ectothermic animals relate to endother-

mic, herbivores to carnivores, birds to quadrupeds, etc. In fact, differences of the

allometric parameters have been found in these special cases.

What are the real surface–volume relations of various bodies, and how do they

influence the allometric function (Fig. 3.73)? Simple geometrical considerations

show that the surface of a sphere grows with a function 4.84 V2/3, that of a cube by

6 V2/3. If one dimension of the cube is prolonged 10 times, the result would be

8.89 V2/3. For mammals, factors between 9 and 11 have been estimated. This means

that even for not fully geometrically similar animals, the surface-to-volume rela-

tion, or if the density (r) is constant, even the surface–mass relation may only differ

in terms of the allometric coefficient, but not the allometric exponent.

Recently, a number of theories have been proposed to explain the allometric

exponent of metabolism and its variation according to size and physiological condi-

tion. Instead of the body surface as considered by Rubner, mostly the transportation

network of blood circulation was taken into account. So, for example a quarter-power

law was derived, based mostly on geometry, particularly the hierarchical nature of

circulatory networks. It seems however, that none of these models is complete,

because the metabolic rate must account for all irreversible losses.

Allometric considerations are in fact not only centered on problems of metabo-

lism. In Fig. 3.70 the area of wings of various insects and birds is plotted as a

function of body mass. This also shows an allometric exponent of around 2/3. In

fact, similar functions are considered in relation to a large number of structural and

functional parameters such as size of legs, thickness of bones, dimensions of eggs,

lifetime, heart frequency, speed of running, swimming, etc.

Fig. 3.73 Allometric functions of metabolism (red) according to Rubner’s surface rule (broken
red line:F ¼ 1.2 m2/3), and Kleiber’s rule (full red line:F ¼ 1.02 m3/4), as well as simple surface

mass relations (suppose: r ¼ 103 kg m�3) of a sphere, a cube, a 1:10 prolonged cube, and that for a

dog as a representative quadrupedal animal (blue lines)
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These parameters are always first estimated experimentally, followed by

attempts at theoretical explanation. Sometimes simple relations are combined

with measured allometric exponents. For example, the number of steps (n), a
running animal must take per unit distance, inversely related to the length of the

steps, and therefore inversely proportional to its length (l). This in turn can be

related to the body mass:

n 
 1

l

 m�1=3 (3.250)

Furthermore, flat running can be related to the corresponding friction, whereas

the climbing involved in running uphill means it must additionally account for the

increase in potential energy. These types of speculation are usually connected again

to metabolic and structural factors, deriving various dimensionless parameters.

Further Reading

Ahlborn 2005; Bejan and Marden 2009; Da Silva et al. 2006; Schmidt-Nielsen

1999; West and Brown 2004.
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